Herein, we provide evidence on the expression of transient receptor potential vanilloid type 1 (TRPV1) on human urothelial cancer (UC) cells and its involvement in the apoptosis induced by the selective agonist capsaicin (CPS). We analyzed TRPV1 messenger RNA and protein expression on human UC cell lines demonstrating its progressive decrease in high-grade UC cells. Treatment of RT4 cells with CPS induced cell cycle arrest in G(0)/G(1) phase and apoptosis. These events were associated with rapid co-ordinated transcription of pro-apoptotic genes including Fas/CD95, Bcl-2 and caspase families and ataxia telangiectasia mutated (ATM)/CHK2/p53 DNA damage response pathway. CPS induced Fas/CD95 upregulation, but more importantly Fas/CD95 ligand independent, TRPV1-dependent death receptor clustering and triggering of both extrinsic and intrinsic mitochondrial-dependent pathways. Moreover, we observed that CPS activates ATM kinase that is involved in Ser15, Ser20 and Ser392 p53 phosphorylation as shown by the use of the specific inhibitor KU55933. Notably, ATM activation was also found to control upregulation of Fas/CD95 expression and its co-clustering with TRPV1 as well as RT4 cell growth and apoptosis. Altogether, we describe a novel connection between ATM DNA damage response pathway and Fas/CD95-mediated intrinsic and extrinsic apoptotic pathways triggered by TRPV1 stimulation on UC cells.
Kalogris C, Caprodossi S, Amantini C, Lambertucci F, Nabissi M, Morelli M B, Farfariello V, Filosa A, Emiliozzi M C, Mammana G & Santoni G (2010) Histopathology 57, 744–752 Expression of transient receptor potential vanilloid‐1 (TRPV1) in urothelial cancers of human bladder: relation to clinicopathological and molecular parameters
Aims: To evaluate the expression of transient receptor potential vanilloid type‐1 channel protein (TRPV1) in normal and neoplastic urothelial tissues and to correlate TRPV1 expression with clinicopathological parameters and disease‐specific survival.
Methods and results: TRPV1 expression was analysed in normal and neoplastic urothelial samples at both mRNA and protein levels by quantitative real time polymerase chain reaction (qPCR) and immunohistochemistry, respectively. TRPV1 downregulation was found in urothelial cancer (UC) specimens, which correlated with tumour progression. Moreover, TRPV1 mRNA levels were associated with clinicopathological parameters to assess the role of TRPV1 downregulation as a negative prognostic factor for survival. Kaplan–Meier survival analysis demonstrated a significantly shorter survival in patients showing TRPV1 mRNA downregulation. Multivariate Cox regression analysis indicated further that TRPV1 mRNA expression retained its significance as an independent risk factor.
Conclusions: The progression of UC of human bladder is associated with a marked decrease in TRPV1 expression, with a progressive loss in high‐grade muscle invasive UC. Downregulation of TRPV1 mRNA expression may represent an independent negative prognostic factor for bladder cancer patients.
BackgroundThere is evidence that calcium (Ca2+) increases the proliferation of human advanced prostate cancer (PCa) cells but the ion channels involved are not fully understood. Here, we investigated the correlation between alpha1D-adrenergic receptor (alpha1D-AR) and the transient receptor potential vanilloid type 1 (TRPV1) expression levels in human PCa tissues and evaluated the ability of alpha1D-AR to cross-talk with TRPV1 in PCa cell lines.MethodsThe expression of alpha1D-AR and TRPV1 was examined in human PCa tissues by quantitative RT-PCR and in PCa cell lines (DU145, PC3 and LNCaP) by cytofluorimetry. Moreover, alpha1D-AR and TRPV1 colocalization was investigated by confocal microscopy in PCa cell lines and by fluorescence microscopy in benign prostate hyperplasia (BPH) and PCa tissues. Cell proliferation was assessed by BrdU incorporation. Alpha1D-AR/TRPV1 knockdown was obtained using siRNA transfection. Signalling pathways were evaluated by measurement of extracellular acidification rate, Ca2+ flux, IP3 production, western blot and MTT assay.ResultsThe levels of the alpha1D-AR and TRPV1 mRNAs are increased in PCa compared to BPH specimens and a high correlation between alpha1D-AR and TRPV1 expression levels was found. Moreover, alpha1D-AR and TRPV1 are co-expressed in prostate cancer cell lines and specimens. Noradrenaline (NA) induced an alpha1D-AR- and TRPV1-dependent protons release and Ca2+ flux in PC3 cell lines; NA by triggering the activation of phospholipase C (PLC), protein kinase C (PKC) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways stimulated PC3 cell proliferation, that was completely inhibited by clopenphendioxan (WS433) and capsazepine (CPZ) combination or by alpha1D-AR/TRPV1 double knockdown.ConclusionsWe demonstrate a cross-talk between alpha1D-AR and TRPV1, that is involved in the control of PC3 cell proliferation. These data strongly support for a putative novel pharmacological approach in the treatment of PCa by targeting both alpha1D-AR and TRPV1 channels.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2407-14-921) contains supplementary material, which is available to authorized users.
TRUS evaluation in case of persistent LUTS associated with fever or acute urinary retention is determinant in the diagnosis of PA. Office or institutional management with TRUS needle aspiration is a good option in these cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.