The evolution of parasite resistance has often been assumed to be governed by antagonistic selection pressures. Defense against pathogens, by mounting an immune response, confers evident benefits but may also incur costs, so that the optimal level of defense is expected to depend on the balance between benefits and costs. Although the benefits of immune surveillance are well known, estimates of costs are still equivocal. Here we studied the behavioral and physiological modifications associated with exposure to a nonreplicating antigen (lipopolysaccharide [LPS] of Escherichia coli) in a passerine species, the house sparrow (Passer domesticus). We further investigated whether the behavioral and physiological changes provoked by LPS induced measurable repercussions on life-history traits, such as the breeding effort and reproductive success. Finally, we tested whether the trade-off between immune activation and breeding effort was modulated by the workload required to feed the brood. Exposure to LPS reduced activity and increased body mass loss of captive individuals; similarly, LPS injection induced a dramatic drop in feeding rate and reproductive success of breeding females. However, this reduction depended on brood size, suggesting that the strength of the trade-off between immune activation and reproduction was affected by the workload required to feed the brood. Overall, this study stresses the magnitude of costs associated with mounting immune responses and the ecological and evolutionary consequences for natural populations.
In iteroparous species high investment in current reproduction is usually paid in terms of reduced future reproduction and increased mortality. However, the proximal mechanisms of these costs remain poorly understood. Free radicals arising as by-products of normal metabolic activities have deleterious effects on cellular proteins, lipids and DNA, and this phenomenon is known as oxidative stress. Since reproduction is an energetically demanding activity, which increases both basal and field metabolic rates, one could expect that breeding effort generates an oxidative stress whose strength depends on the availability and efficiency of antioxidant defences. In agreement with this prediction, we show here for the first time that reproduction decreases antioxidant defences, illustrating that oxidative stress represents a cost of reproduction. We suggest that increased susceptibility to oxidative stress might be a general proximal connection between reproduction and survival underlying other mechanistic links previously acknowledged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.