On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced LIGO/Virgo (GW170817) and as a short gammaray burst by Fermi /GBM and Integral /SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behaviour of a "kilonova/macronova", powered by the radioactive decay of massive neutronrich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide dominated ejecta, and the much slower evolution in the near-infrared K s -band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the 3rd r-process peak (atomic masses A ≈ 195). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major -if not the dominant -site of rapid neutron capture nucleosynthesis in the universe.
KOI-13.01, a planet-sized companion in an optical double star was announced as one of the 1235 Kepler planet candidates in February 2011. The transit curves show significant distortion that was stable over the ∼130 days time-span of the data. Here we investigate the phenomenon via detailed analyses of the two components of the double star and a re-reduction of the Kepler data with pixel-level photometry. Our results indicate that KOI-13 is a common proper motion binary, with two rapidly rotating components (v sin i ≈65-70 km/s). We identify the host star of KOI-13.01 and conclude that the transit curve asymmetry is consistent with a companion orbiting a rapidly rotating, possibly elongated star on an oblique orbit. The radius of the transiter is 2.2 R J , implying an irradiated late-type dwarf, probably a hot brown dwarf rather than a planet. KOI-13 is the first example for detecting orbital obliquity for a substellar companion without measuring the Rossiter-McLaughlin effect with spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.