Progress in retinal-cell therapy derived from human pluripotent stem cells currently faces technical challenges that require the development of easy and standardized protocols. Here, we developed a simple retinal differentiation method, based on confluent human induced pluripotent stem cells (hiPSC), bypassing embryoid body formation and the use of exogenous molecules, coating, or Matrigel. In 2 wk, we generated both retinal pigmented epithelial cells and self-forming neural retina (NR)-like structures containing retinal progenitor cells (RPCs). We report sequential differentiation from RPCs to the seven neuroretinal cell types in maturated NR-like structures as floating cultures, thereby revealing the multipotency of RPCs generated from integration-free hiPSCs. Furthermore, Notch pathway inhibition boosted the generation of photoreceptor precursor cells, crucial in establishing cell therapy strategies. This innovative process proposed here provides a readily efficient and scalable approach to produce retinal cells for regenerative medicine and for drug-screening purposes, as well as an in vitro model of human retinal development and disease.retinal ganglion cells | rods | cones I rreversible blindness caused by retinal diseases, such as inherited retinopathies, age-related macular degeneration (AMD), or glaucoma, is mainly due to the impairment or loss of function of photoreceptor cells, supporting retinal pigmented epithelium (RPE) or retinal ganglion cells (RGCs). Rescuing the degenerated retina is a major challenge for which specific cell replacement is one of the most promising approaches (1, 2). Pluripotent stem cells, like human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs), have the ability to be expanded indefinitely in culture and could be used as an unlimited source of retinal cells for the treatment of retinal degenerative diseases (3, 4). Several publications have indicated that hESCs and hiPSCs can be differentiated into RPE cells spontaneously after fibroblast growth factor (FGF) 2 removal (5-7) or by different floating aggregate methods (8-11). Concerning neural retinal cells, a growing body of convergent data has demonstrated the ability of hESCs or hiPSCs to be committed into the neural retinal lineage and further differentiated into cells expressing photoreceptor markers (12-15). Recent innovative approaches using 3D -cultures from embryoid bodies (EBs) of hESCs or hiPSCs allowed the self-formation of optic cup (OC) structures (16) or the generation of optic vesicle (OV)-like structures (17), depending on the addition of exogenous molecules and different substrates used. These protocols require multiple steps and trained handling, which are not always compatible with the manufacturing process for therapeutic approach or drug screening that need a large-scale production of cells of interest. Therefore, very simple and reliable approaches minimizing the use of exogenous molecules should be developed to generate hESCs or hiPSC-derived retinal cells.In the present study, ...
Human induced pluripotent stem cells (hiPSCs) are potentially useful in regenerative therapies for retinal disease. For medical applications, therapeutic retinal cells, such as retinal pigmented epithelial (RPE) cells or photoreceptor precursors, must be generated under completely defined conditions. To this purpose, we have developed a two-step xeno-free/feeder-free (XF/FF) culture system to efficiently differentiate hiPSCs into retinal cells. This simple method, relies only on adherent hiPSCs cultured in chemically defined media, bypassing embryoid body formation. In less than 1 month, adherent hiPSCs are able to generate self-forming neuroretinal-like structures containing retinal progenitor cells (RPCs). Floating cultures of isolated structures enabled the differentiation of RPCs into all types of retinal cells in a sequential overlapping order, with the generation of transplantation-compatible CD73 photoreceptor precursors in less than 100 days. Our XF/FF culture conditions allow the maintenance of both mature cones and rods in retinal organoids until 280 days with specific photoreceptor ultrastructures. Moreover, both hiPSC-derived retinal organoids and dissociated retinal cells can be easily cryopreserved while retaining their phenotypic characteristics and the preservation of CD73 photoreceptor precursors. Concomitantly to neural retina, this process allows the generation of RPE cells that can be effortlessly amplified, passaged, and frozen while retaining a proper RPE phenotype. These results demonstrate that simple and efficient retinal differentiation of adherent hiPSCs can be accomplished in XF/FF conditions. This new method is amenable to the development of an in vitro GMP-compliant retinal cell manufacturing protocol allowing large-scale production and banking of hiPSC-derived retinal cells and tissues. Stem Cells 2017;35:1176-1188.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.