The Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) is a hematopoietic growth factor that regulates the in vitro and in vivo proliferation and differentiation of hematopoietic cells through the interaction with a specific heterodimeric receptor complex (GM-CSFR), consisting of an alpha and a beta chain with molecular weights of 80 and 120 KDa, respectively. We have studied the expression of the GM-CSFR (alpha chain) on the surface of the human osteosarcoma cell line SaOS-2 and the in vitro effects of different concentrations (10, 100, and 200 ng/ml) of GM-CSF on GM-CSFR expression and the biological activity of SaOS-2 cells. Our data show that SaOS-2 cells express GM-CSFR and that GM-CSF can down-regulate the expression of its own receptor on these cells. Furthermore, to evaluate the biological effects of GM-CSF on SaOS-2 cells, we have investigated cell proliferation and differentiation of these cells treated with different doses of the growth factor through: (1) a morphological analysis of typical osteoblast differentiation markers such as osteopontin and BSP-II; (2) measurement of alkaline phosphatase (ALP) activity; (3) production of bone ECM components (collagen I, fibronectin, tenascin, and laminin); (4) production of interleukin-6 (IL-6) and osteocalcin in the culture medium. The results show that the in vitro treatment of SaOS-2 cells with recombinant human GM-CSF causes a decreased cell proliferation and an increased production of osteopontin, BSP-II, ALP, IL-6, and most but not all ECM components. These findings suggest that GM-CSF can regulate proliferation and differentiation of osteoblast-like SaOS-2 cells and could also play an unexpected role in the maturation of bone tissue.
Myofibroblasts are activated fibroblasts involved in tissue repair and cancer. They are characterized by de novo expression of α-smooth muscle actin (α-SMA), immunoregulatory phenotype and paracrine interaction with normal and tumorigenic cells leading to cell proliferation. At the end of wound-healing myofibroblasts undergo apoptotic cell death, whereas in vitro-activated fibroblasts are also subjected to a programmed necrosis-like cell death, termed nemosis, associated with cyclooxygenase-2 (COX-2) expression induction and inflammatory response. Furthermore, myofibroblasts form clusters during wound healing, fibrotic states and tumorigenesis. In this study, we generated and analysed clusters such as spheroids from human primary cutaneous myofibroblasts, which represent a part of stromal microenvironment better than established cell lines. Therefore, we evaluated apoptotic or necrotic cell death, inflammation and activation markers during myofibroblasts clustering. The spheroids formation did not trigger apoptosis, necrotic cell death and COX-2 protein induction. The significant decrease of α-SMA in protein extracts of spheroids, the cytostatic effect exerted by spheroids conditioned medium on both normal and cancer cell lines and the absence of proliferation marker Ki-67 after 72 h of three-dimensional culture indicated that myofibroblasts have undergone a deactivation process within spheroids. The cells of spheroids reverted to adhesion growth preserved their proliferation capability and can re-acquire a myofibroblastic phenotype. Moreover, the spontaneous formation of clusters on plastic and glass substrates suggests that aggregates formation could be a physiological feature of cutaneous myofibroblasts. This study represents an experimental model to analyse myofibroblasts deactivation and suggests that fibroblast clusters could be a cell reservoir regulating tissues turnover.
Systemic sclerosis (SSc) is characterized by chronic inflammation and fibrosis. N-Formyl peptide (fMLF) receptors (FPRs) are chemotactic receptors involved in inflammation. Three FPRs have been identified: FPR1, FPR2, and FPR3. We have examined, by RT-PCR, Western blot and immunohistochemistry, FPRs expression in skin fibroblasts from 10 normal subjects and 10 SSc patients, showing increased expression in SSc fibroblasts. Several functions of FPRs occur through the interaction with a region of the urokinase-type plasminogen activator receptor (uPAR88–92), able to interact with FPRs and to mediate urokinase (uPA) or fMLF-dependent cell migration. Soluble uPAR84–95 peptide can act as a direct ligand of FPRs. Furthermore, uPA or its aminoterminal fragment (ATF) can promote the exposure of the uPAR88–92 region. The WKYMVm peptide is a FPRs pan-agonist. We investigated the functional effects of these agonists on normal and SSc fibroblasts. ATF, uPAR84–95, and WKYMVm regulated adhesion, migration, and proliferation of normal fibroblasts. Despite FPR overexpression, the response of SSc fibroblasts to the same agonists was greatly reduced, except for the proliferative response to ATF. SSc fibroblasts showed increased α-smooth muscle actin expression and improved capability to induce wound closure. Indeed, they overexpressed a cleaved uPAR form, exposing the uPAR88–92 region, and vitronectin, both involved in fibrosis and in the fibroblast-to-myofibroblast transition. FPR stimulation promoted α-smooth muscle actin expression in normal fibroblasts as well as motility, matrix deposition, αvβ5 integrin expression, and radical oxygen species generation in normal and SSc fibroblasts. This study provides evidence that FPRs may play a role in fibrosis and in the fibroblast-to-myofibroblast transition.
The aim of the study was to examine the biochemical and structural changes occurring in the periodontal ligament (PDL) during orthodontic-force application using micro-Raman spectroscopy ( μ -RS). Adolescent and young patients who needed orthodontic treatment with first premolar extractions were recruited. Before extractions, orthodontic forces were applied using a closed-coil spring that was positioned between the molar and premolar. Patients were randomly divided into three groups, whose extractions were performed after 2, 7, and 14 days of force application. From the extracted premolars, PDL samples were obtained, and a fixation procedure with paraformaldehyde was adopted. Raman spectra were acquired for each PDL sample in the range of 1000–3200 cm − 1 and the more relevant vibrational modes of proteins (Amide I and Amide III bands) and CH 2 and CH 3 modes were shown. Analysis indicated that the protein structure in the PDL samples after different time points of orthodontic-force application was modified. In addition, changes were observed in the CH 2 and CH 3 high wavenumber region due to local hypoxia and mechanical force transduction. The reported results indicated that μ -RS provides a valuable tool for investigating molecular interchain interactions and conformational modifications in periodontal fibers after orthodontic tooth movement, providing quantitative insight of time occurring for PDL molecular readjustment.
Insulin effects are mediated by multiple integrated signals generated by the insulin receptor. Fibroblasts, as most of mammalian cells, are a target of insulin action and are important actors in the vascular pathogenesis of hyperinsulinemia. A role for calcium-calmodulin-dependent kinases (CaMK) in insulin signaling has been proposed but has been under investigated. We investigated the role of the CaMK isoform II in insulin signaling in human fibroblasts. A rapid and transient increase of intracellular calcium concentration was induced by insulin stimulation, followed by increase of CaMKII activity, via L type calcium channels. Concomitantly, insulin stimulation induced Raf-1 and ERK activation, followed by thymidine uptake. Inhibition of CaMKII abrogated the insulin-induced Raf-1 and ERK activation, resulting also in the inhibition of thymidine incorporation. These results demonstrate that in fibroblasts, insulin-activated CaMKII is necessary, together with Raf-1, for ERK activation and cell proliferation. This represents a novel mechanism in the control of insulin signals leading to fibroblast proliferation, as well as a putative site for pharmacological intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.