Background: Enteropathy in coeliac disease (CD) is sustained by a gliadin specific Th1 response. Interleukin (IL)-10 can downregulate Th1 immune responses. Aim: We investigated the ability of recombinant human (rh) IL-10 to suppress gliadin induced Th1 response. Patients and methods: IL-10 RNA transcripts were analysed by competitive reverse transcriptionpolymerase chain reaction in duodenal biopsies from untreated and treated CD patients, non-coeliac enteropathies (NCE), and controls. CD biopsies were cultured with a peptic-tryptic digest of gliadin with or without rhIL-10. The proportion of CD80+ and CD25+ cells in the lamina propria, epithelial expression of Fas, intraepithelial infiltration of CD3+ cells, as well as cytokine synthesis (interferon c (IFN-c) and IL-2) were measured. Short term T cell lines (TCLs) obtained from treated CD biopsies cultured with gliadin with or without rhIL-10 were analysed by ELISPOT for gliadin specific production of IFN-c. Results: In untreated CD and NCE, IL-10 RNA transcripts were significantly upregulated. In ex vivo organ cultures, rhIL-10 downregulated gliadin induced cytokine synthesis, inhibited intraepithelial migration of CD3+ cells, and reduced the proportion of lamina propria CD25+ and CD80+ cells whereas it did not interfere with epithelial Fas expression. In short term TCLs, rhIL-10 abrogated the IFN-c response to gliadin. Conclusions: rhIL-10 suppresses gliadin specific T cell activation. It may interfere with the antigen presenting capacity of lamina propria mononuclear cells as it reduces the expression of CD80. Interestingly, rhIL-10 also induces a long term hyporesponsiveness of gliadin specific mucosal T cells. These results offer new perspectives for therapeutic strategies in coeliac patients based on immune modulation by IL-10.
Celiac disease (CD) results from a permanent intolerance to dietary gluten and is due to a massive T cell-mediated immune response to gliadin, the main component of gluten. In this disease, the regulation of immune responses to dietary gliadin is altered. Herein, we investigated whether IL-10 could modulate anti-gliadin immune responses and whether gliadin-specific type 1 regulatory T (Tr1) cells could be isolated from the intestinal mucosa of CD patients in remission. Short-term T cell lines were generated from jejunal biopsies, either freshly processed or cultured ex vivo with gliadin in the presence or absence of IL-10. Ex vivo stimulation of CD biopsies with gliadin in the presence of IL-10 resulted in suppression of Ag-specific proliferation and cytokine production, indicating that pathogenic T cells are susceptible to IL-10-mediated immune regulation. T cell clones generated from intestinal T cell lines were tested for gliadin specificity by cytokine production and proliferative responses. The majority of gliadin-specific T cell clones had a Th0 cytokine production profile with secretion of IL-2, IL-4, IFN-γ, and IL-10 and proliferated in response to gliadin. Tr1 cell clones were also isolated. These Tr1 cells were anergic, restricted by DQ2 (a CD-associated HLA), and produced IL-10 and IFN-γ, but little or no IL-2 or IL-4 upon activation with gliadin or polyclonal stimuli. Importantly, gliadin-specific Tr1 cell clones suppressed proliferation of pathogenic Th0 cells. In conclusion, dietary Ag-specific Tr1 cells are present in the human intestinal mucosa, and strategies to boost their numbers and/or function may offer new therapeutic opportunities to restore gut homeostasis.
These data suggest that CD4+CD25+Foxp3+ T cells are induced in situ by gliadin. However, their suppressor capacity might be impaired in vivo by IL-15; this phenomenon contributes to maintain and expand the local inflammatory response in CD.
Barrett's esophagus (BE) is an acquired disorder due to chronic gastroesophageal reflux. Environmental factors seem to play an important role in the pathogenesis of BE, especially in Western society. A multicenter case-control study was carried out between February 1995 and April 1999 in 8 Italian Departments of Gastroenterology gathered in a study group (GOSPE), in order to analyze the influence of some individual characteristics and life-style habits on the occurrence of BE. Three groups of patients were studied: 149 patients with BE, 143 patients with esophagitis (E) and 308 hospital controls (C) with acute, non-neoplastic, non-gastroenterological conditions. The diagnosis of BE was based on endoscopy and histology. E was defined by the Savary classification (grade I-III). Data collection was performed by using a questionnaire that focused on smoking, coffee and alcohol consumption, medical history, drugs history, gastroesophageal reflux disease (GERD) symptoms (heartburn, regurgitation) and socio-economic status. Multivariate analysis showed that the frequency of weekly GERD symptoms was significantly associated with both BE and E (p<0.0001), such as the presence of hiatal hernia (p<0.001). Ulcer was significantly associated with BE (p.)100.0؍ Among patients with E, the risk was directly related to spirits consumption (p.)30.0؍ Patients with GERD symptoms that lasted more than 13 years were more likely to have BE than E (p.)10.0؍ In conclusion, results from our study point out that long-standing GERD symptoms, hiatal hernia and possibly alcohol consumption are risk factors in the development of the BE and E.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.