In the present study, we report the preparation of silver nanoparticles in the range of 10–15 nm with increased stability and enhanced anti-bacterial potency. The morphology of the nanoparticles was characterized by transmission electron microscopy. The antibacterial effect of silver nanoparticles used in this study was found to be far more potent than that described in the earlier reports. This effect was dose dependent and was more pronounced against gram-negative bacteria than gram-positive organisms. Although bacterial cell lysis could be one of the reasons for the observed antibacterial property, nanoparticles also modulated the phosphotyrosine profile of putative bacterial peptides, which could thus affect bacterial signal transduction and inhibit the growth of the organisms.
Thrombotic disorders have emerged as serious threat to society. As anticoagulant and thrombolytic therapies are usually associated with serious bleeding complications, the focus has now shifted to regulating and maintaining platelets in an inactive state. In the present study we show that nanosilver has an innate antiplatelet property and effectively prevents integrin-mediated platelet responses, both in vivo and in vitro, in a concentration-dependent manner. Ultrastructural studies show that nanosilver accumulates within platelet granules and reduces interplatelet proximity. Our findings further suggest that these nanoparticles do not confer any lytic effect on platelets and thus hold potential to be promoted as antiplatelet/antithrombotic agents after careful evaluation of toxic effects.
Poly(epsilon-caprolactone) (PCL)/layered silicate nanocomposites have been prepared via solution route. Two different organically modified nanoclays were used to compare the variation in properties based on organic modifications. The nanostructures, as observed from wide-angle X-ray diffraction and transmission electron microscopy, indicate intercalated and partially exfoliated hybrids depending on the nature of organic modification in nanoclay. The nanohybrids exhibit significant improvement in thermal and mechanical properties of the matrix as compared to neat polymer. The nanoclays act as nucleating agent for the crystallization of PCL. The biodegradability of pure PCL and its nanocomposites have been studied under controlled conditions in enzyme, pure microorganism (fungi), compost, Ganges water, and alkaline buffer solution. The rate of biodegradation of PCL has enhanced dramatically in nanohybrids and depends strongly on the media used. Scanning confocal, electron, and atomic force microscopes have used to demarcate the nature of biodegradation of pristine PCL and its nanocomposites. The change in biodegradation is rationalized in terms of the crystallization behavior and organic modification in nanoclays of the nanohybrids vis-a-vis the neat polymer. The extent of compatibility was measured quantitatively through the interaction parameter for two different nanoclays to compare and establish the reason for variation in their properties in nanohybrids. A biodegradation mechanism has been revealed for PCL and its nanocomposites through enzyme activity in varying pH environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.