Monkeypox virus (MPXV) caused a global outbreak in 2022, fueled by behaviorally-altered and enhanced human-to-human transmission. While smallpox vaccines were rapidly deployed to curb spread and disease among those at highest risk, breakthrough disease was noted after complete immunization. Given the imminent threat of additional zoonotic events as well as the viruses evolving ability to drive human-to-human transmission, there is an urgent need for the development of a MPXV-specific vaccine that is able to also confer broad protection against evolving strains and related orthopoxviruses. Here, we demonstrate that an mRNA-lipid nanoparticle vaccine encoding a set of four highly conserved MPXV surface proteins involved in virus attachment, entry and transmission can induce MPXV-specific immunity and heterologous protection against a lethal vaccinia virus (VACV) challenge. Compared to Modified Vaccinia Virus Ankara (MVA), which forms the basis for the current MPXV vaccine, mRNA-vaccination generated superior neutralizing and cellular spread-inhibitory activities against MPXV and VACV as well as greater Fc-effector Th1-biased humoral immunity to the four MPXV antigens and the four VACV homologs. Single MPXV antigen mRNA vaccines provided partial protection against VACV challenge, while combinations of two, three or four MPXV antigen expressing mRNAs protected against disease-related weight loss and death. Remarkably, the cross-protection by multivalent MPXV mRNAs was superior to the homologous protection by MVA, associated with a combination of neutralizing and non-neutralizing antibody functions. These data reveal robust protection against VACV using an mRNA-based vaccine targeting four highly conserved viral surface antigens, linked to the induction of highly functional antibodies able to rapidly control viral infection.
While Epstein-Barr virus causes mostly asymptomatic infection, associated malignancies, and autoimmune and lymphoproliferative diseases occur. To dissect the evolution of humoral immune responses over the course of EBV infection and to gain a better understanding of the potential contribution of antibody (Ab) function to viral control, we comprehensively profiled Ab specificities and Fc-functionalities using systems serology and VirScan. Ab functions against two early (p18 and p47/54) and two latent (gp350/220 and EBNA-1) EBV proteins were overall modest and/or short-lived, differing from humoral responses induced during acute infection by other viruses such as HIV. In the first year post infection, only p18 elicited robust IgM-driven complement deposition and IgG-driven neutrophil phagocytosis while responses against EBNA-1 were largely Fc-functionally silent and only matured during chronic infection to drive phagocytosis. In contrast, Abs against Influenza virus readily mediated broad Fc-activity in all participants. These data suggest that EBV evades the induction of robust Fc-functional Abs, potentially due to the virus’ life cycle, switching from lytic to latent stages during infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.