The radiocarbon (14C) calibration curve so far contains annually resolved data only for a short period of time. With accelerator mass spectrometry (AMS) matching the precision of decay counting, it is now possible to efficiently produce large datasets of annual resolution for calibration purposes using small amounts of wood. The radiocarbon intercomparison on single-year tree-ring samples presented here is the first to investigate specifically possible offsets between AMS laboratories at high precision. The results show that AMS laboratories are capable of measuring samples of Holocene age with an accuracy and precision that is comparable or even goes beyond what is possible with decay counting, even though they require a thousand times less wood. It also shows that not all AMS laboratories always produce results that are consistent with their stated uncertainties. The long-term benefits of studies of this kind are more accurate radiocarbon measurements with, in the future, better quantified uncertainties.
A gravity core SK-221 recovered from the southeastern Arabian Sea near Laccadive-Chagos Ridge was examined to identify the sources of detrital clay minerals and to decipher paleoenvironmental changes for the last 30 kyr. The clay mineral assemblages predominantly consist of illite, kaolinite and chlorite with small amounts of smectite. Quartz, feldspar and occasionally gibbsite are the clay-sized non-clay minerals present in the examined section. The detrital clay minerals primarily originated from the hinterland and were supplied to the present site by the numerous small rivers draining western India during preglacial and Holocene periods, and partly by the strong reworking of Indian continental shelf during glacial period. The low values of humidity proxies (kaolinite content, kaolinite to illite and smectite to illite ratios) and better illite crystallinity indicate relatively weak summer monsoon condition that resulted in reduced chemical weathering during glacial period, which was interrupted by a discrete event of winter monsoon intensification at ∼20-17 ka. The increased kaolinite content, higher values of humidity indices and poorer illite crystallinity reflect high humidity that resulted in strong hydrolysis activity during the preglacial and Holocene periods. The increased CaCO 3 during above periods also indicates less terrigenous dilution and intensified southwest monsoon-led upwelling which result in higher surface biogenic productivity. The characteristic clay mineral associations broadly suggest dry to semi-drier conditions during Heinrich Events H1, H2, and H3 and also during Younger Dryas. The low values of biogenic carbonate and organic carbon also indicate low productivity associated with weak summer monsoons during Heinrich Events. Abrupt increased humidity was recorded at 15-12.7 ka (Bølling/Allerød Event) sandwiched between two lows of Heinrich Events. Cycles of millennial timescale variations 2300, 1800, 1300 and 1000 yr have been observed from the clay mineralogical data. All the cycles observed in the monsoonal climate appear to be part of global oscillations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.