Estrogen receptors (ERs) are critical regulators of breast cancer development. Identification of molecules that regulate the function of ERs may facilitate the development of more effective breast cancer treatment strategies. In this study, we showed that the forkhead transcription factor FOXK2 interacted with ERα, and inhibited ERα-regulated transcriptional activities by enhancing the ubiquitin-mediated degradation of ERα. This process involved the interaction between FOXK2 and BRCA1/BARD1, the E3 ubiquitin ligase of ERα. FOXK2 interacted with BARD1 and acted as a scaffold protein for BRCA1/BARD1 and ERα, leading to enhanced degradation of ERα, which eventually accounted for its decreased transcriptional activity. Consistent with these observations, overexpression of FOXK2 inhibited the transcriptional activity of ERα, decreased the transcription of ERα target genes, and suppressed the proliferation of ERα-positive breast cancer cells. In contract, knockdown of FOXK2 in MCF-7 cells promoted cell proliferation. However, when ERα was also knocked down, knockdown of FOXK2 had no effect on cell proliferation. These findings suggested that FOXK2 might act as a negative regulator of ERα, and its association with both ERα and BRCA1/BARD1 could lead to the down-regulation of ERα transcriptional activity, effectively regulating the function of ERα.
Metabolic programming and mitochondrial dynamics along with T cell differentiation affect T cell fate and memory development; however, how to control metabolic reprogramming and mitochondrial dynamics in T cell memory development is unclear. Here, we provide evidence that the SUMO protease SENP1 promotes T cell memory development via Sirt3 deSUMOylation. SENP1-Sirt3 signalling augments the deacetylase activity of Sirt3, promoting both OXPHOS and mitochondrial fusion. Mechanistically, SENP1 activates Sirt3 deacetylase activity in T cell mitochondria, leading to reduction of the acetylation of mitochondrial metalloprotease YME1L1. Consequently, deacetylation of YME1L1 suppresses its activity on OPA1 cleavage to facilitate mitochondrial fusion, which results in T cell survival and promotes T cell memory development. We also show that the glycolytic intermediate fructose-1,6-bisphosphate (FBP) as a negative regulator suppresses AMPK-mediated activation of the SENP1-Sirt3 axis and reduces memory development. Moreover, glucose limitation reduces FBP production and activates AMPK during T cell memory development. These data show that glucose limitation activates AMPK and the subsequent SENP1-Sirt3 signalling for T cell memory development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.