A global system of harmonized observations is needed to inform scientists and policy-makers.
B iodiversity and the many ecosystem functions and services it underpins are undergoing significant and often rapid changes worldwide 1. A range of global initiatives and policy frameworks, including the Convention on Biological Diversity (CBD) and Sustainable Development Goals (SDGs), have aimed to reduce this change and to halt the loss of biodiversity, with limited progress to date 2. Appropriately gauging the impact of such policies or the progress toward international biodiversity goals has a key requirement: the availability of information on the status and trends of biodiversity in a form that is easily understood, timely, scientifically rigorous, standardized, relevant, global and representative of species populations across taxa and regions over time. Such information is particularly crucial in assessments, such as those carried out by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) 3 , and is needed to construct 'indicators' , which are aggregate measures that often address specific conservation targets 4,5. Underpinning such metrics are core, essential measurements known as EBVs, which capture key constituent components of biodiversity change 6,7 , akin and complementary to the 'essential climate variables' supporting climate change assessment and policy 8. Facilitated by the Group on Earth Observations Biodiversity Observation Network (GEO BON, http://geobon.org) and related efforts, the biodiversity science and observation community is now engaging in an effort to conceptualize and formulate these essential biodiversity components to enable more focused, integrated, and effective biodiversity monitoring in support of assessment and policy within a unified framework. This study represents the formal outcome of a process undertaken from 2015 through 2018 by the founding members of the GEO BON Species Populations Working Group 9 , which includes the authors of this Perspective, charged with providing the formal definitions, conceptualizations and recommendations addressing species distribution and abundance EBVs. Changes in species distribution and abundance affect all biodiversity facets 10 , including the loss of potentially significant traits and functions 1,11 and associated ecosystem consequences 12,13. Patterns of spatial distribution and changes to these patterns inform us about the commonness, rarity and potential extinction risk for species 14-16 , determine the national and regional stewardship of species and are key to ensuring effective monitoring 17 , protection 18,19 and population
Estuary sediment and vegetation patterns in Australia, captured by NASA's Landsat 8 satellite in 2013.
Abstract:Integrated environmental modeling (IEM) is inspired by modern environmental problems, decisions, and policies and enabled by transdisciplinary science and computer capabilities that allow the environment to be considered in a holistic way. The problems are characterized by the extent of the environmental system involved, dynamic and interdependent nature of stressors and their impacts, diversity of stakeholders, and integration of social, economic, and environmental considerations. IEM provides a science-based structure to develop and organize relevant knowledge and information and apply it to explain, explore, and forecast the behavior of environmental systems in response to human and natural sources of stress. During the past several years a number of workshops were held that brought IEM practitioners together to share experiences and discuss future needs and directions. In this paper we organize and present the results of these discussions. IEM is presented as a landscape containing four interdependent elements: applications, science, technology, and community. The elements are described from the perspective of their role in the landscape, current practices, and challenges that must be addressed. Workshop participants envision a global scale IEM community that leverages modern technologies to streamline the movement of science-based knowledge from its sources in research, through its organization into databases and models, to its integration and application for problem solving purposes. Achieving this vision will require that the global community of IEM stakeholders transcend social, political, and organizational boundaries and pursue greater levels of collaboration. Among the highest priorities for community action are the development of standards for publishing IEM data and models in forms suitable for automated discovery, access, and integration; education of the next generation of environmental stakeholders, with a focus on transdisciplinary research, development, and decision making; and providing a web-based platform for community interactions (e.g., continuous virtual workshops).
Although satellite-based variables have for long been expected to be key components to a unified and global biodiversity monitoring strategy, a definitive and agreed list of these variables still remains elusive. The growth of interest in biodiversity variables observable from space has been partly underpinned by the development of the essential biodiversity variable (EBV) framework by the Group on Earth Observations -Biodiversity Observation Network, which itself was guided by the process of identifying essential climate variables. This contribution aims to advance the development of a global biodiversity monitoring strategy by updating the previously published definition of EBV, providing a definition of satellite remote sensing (SRS) EBVs and introducing a set of principles that are believed to be necessary if ecologists and space agencies are to agree on a list of EBVs that can be routinely monitored from space. Progress toward the identification of SRS-EBVs will require a clear understanding of what makes a biodiversity variable essential, as well as agreement on who the users of the SRS-EBVs are. Technological and algorithmic developments are rapidly expanding the set of opportunities for SRS in monitoring biodiversity, and so the list of SRS-EBVs is likely to evolve over time. This means that a clear and common platform for data providers, ecologists, environmental managers, policy makers and remote sensing experts to interact and share ideas needs to be identified to support long-term coordinated actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.