Garnet-type solid-state electrolytes have attracted extensive attention due to their high ionic conductivity, approaching 1 mS cm, excellent environmental stability, and wide electrochemical stability window, from lithium metal to ∼6 V. However, to date, there has been little success in the development of high-performance solid-state batteries using these exceptional materials, the major challenge being the high solid-solid interfacial impedance between the garnet electrolyte and electrode materials. In this work, we effectively address the large interfacial impedance between a lithium metal anode and the garnet electrolyte using ultrathin aluminium oxide (AlO) by atomic layer deposition. LiLaCaZrNbO (LLCZN) is the garnet composition of choice in this work due to its reduced sintering temperature and increased lithium ion conductivity. A significant decrease of interfacial impedance, from 1,710 Ω cm to 1 Ω cm, was observed at room temperature, effectively negating the lithium metal/garnet interfacial impedance. Experimental and computational results reveal that the oxide coating enables wetting of metallic lithium in contact with the garnet electrolyte surface and the lithiated-alumina interface allows effective lithium ion transport between the lithium metal anode and garnet electrolyte. We also demonstrate a working cell with a lithium metal anode, garnet electrolyte and a high-voltage cathode by applying the newly developed interface chemistry.
Lithium metal is considered to be the most promising anode for next-generation batteries due to its high energy density of 3840 mAh g(-1). However, the extreme reactivity of the Li surface can induce parasitic reactions with solvents, contamination, and shuttled active species in the electrolyte, reducing the performance of batteries employing Li metal anodes. One promising solution to this issue is application of thin chemical protection layers to the Li metal surface. Using a custom-made ultrahigh vacuum integrated deposition and characterization system, we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. We demonstrate as a proof-of-concept that a 14 nm thick ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li-S battery cells as a test system, we demonstrate an improved capacity retention using ALD-protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles.
The traditional motivation for integrating biological components into microfabricated devices has been to create biosensors that meld the molecular recognition capabilities of biology with the signal processing capabilities of electronic devices. However, a different motivation is emerging; biological components are being explored to radically change how fabrication is achieved at the micro- and nanoscales. Here we review biofabrication, the use of biological materials for fabrication, and focus on three specific biofabrication approaches: directed assembly, where localized external stimuli are employed to guide assembly; enzymatic assembly, where selective biocatalysts are enlisted to build macromolecular structure; and self-assembly, where information internal to the biological material guides its own assembly. Also reviewed are recent results with the aminopolysaccharide chitosan, a material that offers a combination of properties uniquely suited for biofabrication. In particular, chitosan can be directed to assemble in response to locally applied electrical signals, and the chitosan backbone provides sites that can be employed for the assembly of proteins, nucleic acids, and virus particles.
Nanostructured devices have the potential to serve as the basis for next-generation energy systems that make use of densely packed interfaces and thin films. One approach to making such devices is to build multilayer structures of large area inside the open volume of a nanostructured template. Here, we report the use of atomic layer deposition to fabricate arrays of metal-insulator-metal nanocapacitors in anodic aluminium oxide nanopores. These highly regular arrays have a capacitance per unit planar area of approximately 10 microF cm-2 for 1-microm-thick anodic aluminium oxide and approximately 100 microF cm-2 for 10-microm-thick anodic aluminium oxide, significantly exceeding previously reported values for metal-insulator-metal capacitors in porous templates. It should be possible to scale devices fabricated with this approach to make viable energy storage systems that provide both high energy density and high power density.
Mg metal is a promising anode material for next generation rechargeable battery due to its dendrite-free deposition and high capacity. However, the best cathode for rechargeable Mg battery was based on high molecular weight MgxMo3S4, thus rendering full cell energetically uncompetitive. To increase energy density, high capacity cathode material like sulfur is proposed. However, to date, only limited work has been reported on Mg/S system, all plagued by poor reversibility attributed to the formation of electrochemically inactive MgSx species. Here, we report a new strategy, based on the effect of Li(+) in activating MgSx species, to conjugate a dendrite-free Mg anode with a reversible polysulfide cathode and present a truly reversible Mg/S battery with capacity up to 1000 mAh/gs for more than 30 cycles. Mechanistic insights supported by spectroscopic and microscopic characterization strongly suggest that the reversibility arises from chemical reactivation of MgSx by Li(+).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.