Central congenital hypoventilation syndrome is caused by mutations of the gene that encodes the transcription factor Phox2b. The syndrome is characterized by a severe form of sleep apnea attributed to greatly compromised central and peripheral chemoreflexes. In this study, we analyze whether Phox2b expression in the brainstem respiratory network is preferentially associated with neurons involved in chemosensory integration in rats. At the very rostral end of the ventral respiratory column (VRC), Phox2b was present in many VGlut2 (vesicular glutamate transporter 2) mRNA-containing neurons. These neurons were functionally identified as the respiratory chemoreceptors of the retrotrapezoid nucleus (RTN). More caudally in the VRC, many fewer neurons expressed Phox2b. These cells were not part of the central respiratory pattern generator (CPG), because they were typically cholinergic visceral motor neurons or catecholaminergic neurons (presumed C1 neurons). Phox2b was not detected in serotonergic neurons, in the A5, A6, and A7 noradrenergic cell groups nor within the main cardiorespiratory centers of the dorsolateral pons. Phox2b was expressed by many solitary tract nucleus (NTS) neurons including those that relay peripheral chemoreceptor information to the RTN. These and previous observations by others suggest that Phox2b is expressed by an uninterrupted chain of neurons involved in the integration of peripheral and central chemoreception (carotid bodies, chemoreceptor afferents, chemoresponsive NTS neurons projecting to VRC, RTN chemoreceptors). The presence of Phox2b in this circuit and its apparent absence from the respiratory CPG could explain why Phox2b mutations disrupt breathing automaticity during sleep without causing major impairment of respiration during waking.
The rat retrotrapezoid nucleus (RTN) contains pH-sensitive neurons that are putative central chemoreceptors. Here, we examined whether these neurons respond to peripheral chemoreceptor stimulation and whether the input is direct from the solitary tract nucleus (NTS) or indirect via the respiratory network. A dense neuronal projection from commissural NTS (commNTS) to RTN was revealed using the anterograde tracer biotinylated dextran amine (BDA). Within RTN, 51% of BDA-labelled axonal varicosities contained detectable levels of vesicular glutamate transporter-2 (VGLUT2) but only 5% contained glutamic acid decarboxylase-67 (GAD67). Awake rats were exposed to hypoxia (n = 6) or normoxia (n = 5) 1 week after injection of the retrograde tracer cholera toxin B (CTB) into RTN. Hypoxia-activated neurons were identified by the presence of Fos-immunoreactive nuclei. CommNTS neurons immunoreactive for both Fos and CTB were found only in hypoxia-treated rats. VGLUT2 mRNA was detected in 92 ± 13% of these neurons whereas only 12 ± 9% contained GAD67 mRNA. In urethane-chloralose-anaesthetized rats, bilateral inhibition of the RTN with muscimol eliminated the phrenic nerve discharge (PND) at rest, during hyperoxic hypercapnia (10% CO 2 ), and during peripheral chemoreceptor stimulation (hypoxia and/or I.V. sodium cyanide, NaCN). RTN CO 2 -activated neurons were recorded extracellularly in anaesthetized intact or vagotomized rats. These neurons were strongly activated by hypoxia (10-15% O 2 ; 30 s) or by NaCN. Hypoxia and NaCN were ineffective in rats with carotid chemoreceptor denervation. Bilateral injection of muscimol into the ventral respiratory column 1.5 mm caudal to RTN eliminated PND and the respiratory modulation of RTN neurons. Muscimol did not change the threshold and sensitivity of RTN neurons to hyperoxic hypercapnia nor their activation by peripheral chemoreceptor stimulation. In conclusion, RTN neurons respond to brain P CO 2 presumably via their intrinsic chemosensitivity and to carotid chemoreceptor activation via a direct glutamatergic pathway from commNTS that bypasses the respiratory network. RTN neurons probably contribute a portion of the chemical drive to breathe. The chemical drive to breathe relies on central chemoreceptors that detect brain extracellular fluid P CO 2 via pH, and on carotid body chemoreceptors that respond to arterial P CO 2 in a P O 2 -and glucose-dependent manner (Scheid et al.
The retrotrapezoid "nucleus" (RTN), located in the rostral ventrolateral medullary reticular formation, contains a bilateral cluster of ϳ1000 glutamatergic noncatecholaminergic Phox2b-expressing propriobulbar neurons that are activated by CO 2 in vivo and by acidification in vitro. These cells are thought to function as central respiratory chemoreceptors, but this theory still lacks a crucial piece of evidence, namely that stimulating these particular neurons selectively in vivo increases breathing. The present study performed in anesthetized rats seeks to test whether this expectation is correct. We injected into the left RTN a lentivirus that expresses the lightactivated cationic channel ChR2 (channelrhodopsin-2) (H134R mutation; fused to the fluorescent protein mCherry) under the control of the Phox2-responsive promoter PRSx8. Transgene expression was restricted to 423 Ϯ 38 Phox2b-expressing neurons per rat consisting of noncatecholaminergic and C1 adrenergic neurons (3:2 ratio). Photostimulation delivered to the RTN region in vivo via a fiberoptic activated the CO 2 -sensitive neurons vigorously, produced a long-lasting (t 1/2 ϭ 11 s) increase in phrenic nerve activity, and caused a small and short-lasting cardiovascular stimulation. Selective lesions of the C1 cells eliminated the cardiovascular response but left the respiratory stimulation intact. In rats with C1 cell lesions, the mCherry-labeled axon terminals originating from the transfected noncatecholaminergic neurons were present exclusively in the lower brainstem regions that contain the respiratory pattern generator. These results provide strong evidence that the Phox2b-expressing noncatecholaminergic neurons of the RTN region function as central respiratory chemoreceptors.
Central respiratory chemoreception is the mechanism by which the CNS maintains physiologically appropriate pH and PCO 2 via control of breathing. A prominent hypothesis holds that neural substrates for this process are distributed widely in the respiratory network, especially because many neurons that make up this network are chemosensitive in vitro. We and others have proposed that TASK channels (TASK-1, K 2P 3.1 and/or TASK-3, K 2P 9.1) may serve as molecular sensors for central chemoreception because they are highly expressed in multiple neuronal populations in the respiratory pathway and contribute to their pH sensitivity in vitro. To test this hypothesis, we examined the chemosensitivity of two prime candidate chemoreceptor neurons in vitro and tested ventilatory responses to CO 2 using TASK channel knock-out mice. The pH sensitivity of serotonergic raphe neurons was abolished in TASK channel knock-outs. In contrast, pH sensitivity of neurons in the mouse retrotrapezoid nucleus (RTN) was fully maintained in a TASK null background, and pharmacological evidence indicated that a K ϩ channel with properties distinct from TASK channels contributes to the pH sensitivity of rat RTN neurons. Furthermore, the ventilatory response to CO 2 was completely retained in single or double TASK knock-out mice. These data rule out a strict requirement for TASK channels or raphe neurons in central respiratory chemosensation. Furthermore, they indicate that a non-TASK K ϩ current contributes to chemosensitivity of RTN neurons, which are profoundly pH-sensitive and capable of driving respiratory output in response to local pH changes in vivo.
Injection of the neurotoxin saporin-substance P (SSP-SAP) into the retrotrapezoid nucleus (RTN) attenuates the central chemoreflex in rats. Here we ask whether these deficits are caused by the destruction of a specific type of interneuron that expresses the transcription factor Phox2b and is non-catecholaminergic (Phox2b + TH − ). We show that RTN contains around 2100 Phox2b + TH − cells. Injections of SSP-SAP into RTN destroyed Phox2b + TH − neurons but spared facial motoneurons, catecholaminergic and serotonergic neurons and the ventral respiratory column caudal to the facial motor nucleus. Two weeks after SSP-SAP, the apnoeic threshold measured under anaesthesia was unchanged when fewer than 57% of the Phox2b + TH − neurons were destroyed. However, destruction of 70 ± 3.5% of these cells was associated with a dramatic rise of the apnoeic threshold (from 5.6 to 7.9% end-expiratory P CO 2 ). In anaesthetized rats with unilateral lesions of around 70% of the Phox2b + TH − neurons, acute inhibition of the contralateral intact RTN with muscimol instantly eliminated phrenic nerve discharge (PND) but normal PND could usually be elicited by strong peripheral chemoreceptor stimulation (8/12 rats). Muscimol had no effect in rats with an intact contralateral RTN. In conclusion, the destruction of the Phox2b + TH − neurons is a plausible cause of the respiratory deficits caused by injection of SSP-SAP into RTN. Two weeks after toxin injection, 70% of these cells must be killed to cause a severe attenuation of the central chemoreflex under anaesthesia. The loss of an even greater percentage of these cells would presumably be required to produce significant breathing deficits in the awake state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.