The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.
Entry inhibitors are of particular importance in current efforts to develop a new generation of anti-influenza virus drugs. Here we report certain pentacyclic triterpenes exhibiting conserved structure features and with in vitro anti-influenza virus activity comparable to and even higher than that of oseltamivir. Mechanistic studies indicated that these lead triterpenoids bind tightly to the viral envelope hemagglutinin (HA), disrupting the interaction of HA with the sialic acid receptor and thus the attachment of viruses to host cells. Docking studies suggest that the binding pocket within HA for sialic acid receptor potentially acts as a targeting domain, and this is supported by structure-activity data, sialic acid competition studies, and broad anti-influenza spectrum as well as less induction of drug resistance. Our study might establish the importance of triterpenoids for development of entry inhibitors of influenza viruses.
Inosine monophosphate dehydrogenase (IMPDH) of human is an attractive target for immunosuppressive agents. Currently, smallmolecule inhibitors do not show good selectivity for different IMPDH isoforms (IMPDH1 and IMPDH2), resulting in some adverse effects, which limit their use. Herein, we used a small-molecule probe specifically targeting IMPDH2 and identified Cysteine residue 140 (Cys140) as a selective druggable site. On covalently binding to Cys140, the probe exerts an allosteric regulation to block the catalytic pocket of IMPDH2 and further induces IMPDH2 inactivation, leading to an effective suppression of neuroinflammatory responses. However, the probe does not covalently bind to IMPDH1. Taken together, our study shows Cys140 as a druggable site for selectively inhibiting IMPDH2, which provides great potential for development of therapy agents for autoimmune and neuroinflammatory diseases with less unfavorable tolerability profile.nosine monophosphate dehydrogenase (IMPDH) is a major rate-limiting enzyme involved in guanosine and deoxyguanosine biosynthesis and widely expressed in immunocytes (1). There exist two IMPDH isoforms (IMPDH1 and IMPDH2), which are encoded by distinct genes (2, 3). Many inflammation-relevant diseases have been specially characterized by the high expression of isoform II of IMPDH (IMPDH2) in rapidly proliferating immunocytes, rather than the "housekeeping" type I isoform (IMPDH1) in normal human leukocytes and lymphocytes (4, 5). Therefore, selective targeting of IMPDH2 with small molecules is an attractive topic for development of antiinflammation agents with low side effects.Both IMPDH isoforms contain two major domains: the catalytic domain for substrate interaction and the Bateman domain, which is not required for catalytic activity but exerts an important allosteric regulation effect on IMPDH activity by communicating with the catalytic domain (6, 7). By influencing catalytic domain activity, the Bateman domain can regulate IMPDH function and further blocks the downstream-of-inflammation signaling pathways (8, 9). Currently, IMPDH inhibitors are divided into two major categories. One kind of inhibitor, including 6-chloropurine riboside ribavirin and mizoribine, targets the binding pocket of the natural substrate, inosine monophosphate (IMP). Another kind of inhibitor (e.g., mycophenolic acid and thiazole-4-carboxamide adenine dinucleotide) targets the site of the cofactor, NAD + / NADH, which usually leads to low selectivity or even side effects in clinical trials, such as diarrhea and leukopenia (10, 11). Moreover, a third ligand has been speculated to bind to a possible site far from the IMP and NAD + pockets as an allosteric inhibitor. However, an allosteric site for designing selective IMPDH2 inhibitors has been largely unexplored.Natural small molecules remain promising drug sources (12, 13). In the present study, we report that a natural small-molecule probe, sappanone A (SA, Fig.1A), demonstrated significant inhibitory effects on neuroinflammation by directly targetin...
Natural triterpenoids, as virus-host fusion inhibitors, exhibit potential in expanding the current repertoire of antiviral agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.