Background BRCA1 and BRCA2 (BRCA1/2)-deficient tumors display impaired homologous recombination repair (HRR) and enhanced sensitivity to DNA damaging agents or to poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi). Their efficacy in germline BRCA1/2 (gBRCA1/2)-mutated metastatic breast cancers has been recently confirmed in clinical trials. Numerous mechanisms of PARPi resistance have been described, whose clinical relevance in gBRCA-mutated breast cancer is unknown. This highlights the need to identify functional biomarkers to better predict PARPi sensitivity.Patients and methodsWe investigated the in vivo mechanisms of PARPi resistance in gBRCA1 patient-derived tumor xenografts (PDXs) exhibiting differential response to PARPi. Analysis included exome sequencing and immunostaining of DNA damage response proteins to functionally evaluate HRR. Findings were validated in a retrospective sample set from gBRCA1/2-cancer patients treated with PARPi.ResultsRAD51 nuclear foci, a surrogate marker of HRR functionality, were the only common feature in PDX and patient samples with primary or acquired PARPi resistance. Consistently, low RAD51 was associated with objective response to PARPi. Evaluation of the RAD51 biomarker in untreated tumors was feasible due to endogenous DNA damage. In PARPi-resistant gBRCA1 PDXs, genetic analysis found no in-frame secondary mutations, but BRCA1 hypomorphic proteins in 60% of the models, TP53BP1-loss in 20% and RAD51-amplification in one sample, none mutually exclusive. Conversely, one of three PARPi-resistant gBRCA2 tumors displayed BRCA2 restoration by exome sequencing. In PDXs, PARPi resistance could be reverted upon combination of a PARPi with an ataxia-telangiectasia mutated (ATM) inhibitor.ConclusionDetection of RAD51 foci in gBRCA tumors correlates with PARPi resistance regardless of the underlying mechanism restoring HRR function. This is a promising biomarker to be used in the clinic to better select patients for PARPi therapy. Our study also supports the clinical development of PARPi combinations such as those with ATM inhibitors.
1 This paper describes the in vitro pharmacology of ZM 241385 (4-(2-[7-amino-2-(2-furyl) antagonized vasodilatation of the coronary bed produced by 2-chloroadenosine (2-CADO) and 2-[p-(2-carboxyethyl) phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680) with pA2 values of 8.57 (c.l., 8.45-8.68) and 9.02 (c.l., 8.79-9.24) respectively. 3 ZM 241385 had low potency at A2b receptors and antagonized the relaxant effects of adenosine in the guinea-pig aorta with a pA2 of 7.06, (c.l., 6.92-7.19). 4 ZM 241385 had a low affinity at A1 receptors. In rat cerebral cortex membranes it displaced tritiated R-phenylisopropyladenosine (R-PIA) with a pIC50 of 5.69 (c.l., 5.57-5.81). ZM 241385 antagonized the bradycardic action of 2-CADO in guinea-pig atria with a pA2 of 5.95 (c.l., 5.72-6.18). 5 ZM 241385 had low affinity for A3 receptors. At cloned rat A3 receptors expressed in chinese hamster ovary cells, it displaced iodinated aminobenzyl-5'-N-methylcarboxamido adenosine (AB-MECA) with a pIC50 of 3.82 (c.l., 3.67-4.06). 6 ZM 241385 had no significant additional pharmacological effects on the isolated tissues used in these studies at concentrations three orders of magnitude greater than those which block A2a receptors. At 10 gM it displayed only minor inhibition of the bradycardic effects in guinea-pig atria to some concentrations of carbachol. At 10 gM, ZM 241385 had a small inhibitory effect on relaxant effects of isoprenaline in guinea-pig aortae but no effect on sodium nitrite-induced relaxation. ZM 241385 (100 gM) was without effect on phenylephrine-induced tone in guinea-pig aortae. 7 ZM 241385 (10 gM) had no inhibitory effect on rat hepatocyte phosphodiesterase types I, II, III and IV but caused a small inhibition of the calcium calmodulin-activated type I enzyme. 8 ZM 241385 is the most selective adenosine A2a receptor antagonist yet described and is therefore a useful tool for characterization of responses mediated by A2 adenosine receptors.
Preclinical data highlight AZD1390 as a potentially powerful new therapy to enhance brain tumor patient responses to radiotherapy.
Induced pluripotent stem cells (iPSCs) with potential for therapeutic applications can be derived from somatic cells via ectopic expression of a set of limited and defined transcription factors. However, due to risks of random integration of the reprogramming transgenes into the host genome, the low efficiency of the process, and the potential risk of virally induced tumorigenicity, alternative methods have been developed to generate pluripotent cells using nonintegrating systems, albeit with limited success. Here, we show that c-KIT+ human first-trimester amniotic fluid stem cells (AFSCs) can be fully reprogrammed to pluripotency without ectopic factors, by culture on Matrigel in human embryonic stem cell (hESC) medium supplemented with the histone deacetylase inhibitor (HDACi) valproic acid (VPA). The cells share 82% transcriptome identity with hESCs and are capable of forming embryoid bodies (EBs) in vitro and teratomas in vivo. After long-term expansion, they maintain genetic stability, protein level expression of key pluripotency factors, high cell-division kinetics, telomerase activity, repression of X-inactivation, and capacity to differentiate into lineages of the three germ layers, such as definitive endoderm, hepatocytes, bone, fat, cartilage, neurons, and oligodendrocytes. We conclude that AFSC can be utilized for cell banking of patient-specific pluripotent cells for potential applications in allogeneic cellular replacement therapies, pharmaceutical screening, and disease modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.