HLA-G is a major histocompatibility complex class Ib molecule whose constitutive tissue distribution is restricted mainly to trophoblast cells at the maternal-fetal interface during pregnancy. In this study, we demonstrated the ability of the soluble HLA-G1 (sHLA-G1) isoform to inhibit fibroblast growth factor-2 (FGF2)-induced capillary-like tubule formation. Using a rabbit corneal neovascularization model, we further showed that sHLA-G1 inhibits FGF2-induced angiogenesis in vivo. We also demonstrated that sHLA-G1 induces endothelial cell apoptosis through binding to BY55/ CD160, a glycosylphosphatidylinositolanchored receptor expressed by endothelial cells. Furthermore, we showed that the specific CL1-R2 anti-CD160 monoclonal antibody mimics sHLA-G1-mediated inhibition of endothelial cell tube formation and induction of apoptosis. Thus, the engagement of CD160 in endothelial cells may be essential for the inhibition of angiogenesis. sHLA-G1/CD160-mediated antiangiogenic property may participate in the vascular remodeling of maternal spiral arteries during pregnancy, and, given that we found that CD160 is strongly expressed in the vasculature of a murine tumor, it offers an attractive therapeutic target for preventing pathologic neovascularization. ( IntroductionHLA-G is a human major histocompatibility complex (MHC) class Ib gene characterized by a unique promoter region, limited polymorphism, restricted constitutive tissue distribution, and several spliced transcripts encoding either membrane-bound or soluble proteins. 1 The soluble HLA-G1 (sHLA-G1) isoform derives from mRNA retaining intron 4, 2 which contains a stop codon that precludes translation of the transmembrane domain. Such intron 4 retention is unique among all HLA class I molecules described to date. This 37-kDa, intron 4-retaining sHLA-G1 isoform associates noncovalently with 2-microglobulin (2m). 2 Soluble HLA-G can also be generated by metalloproteinase-mediated release of surface HLA-G containing only extracellular domains. 3 The predominant expression of sHLA-G1 in the placenta, at a time when polymorphic HLA-A and HLA-B class Ia molecules are repressed, is consistent with important immunologic functions during pregnancy. 4 sHLA-G1 induces apoptosis of activated CD8 ϩ T and natural killer (NK) cells 5,6 and down-regulates the CD4 ϩ T-cell alloproliferation response. 7 The observation that some anti-HLA-G monoclonal antibodies bound to HLA-G-negative placental endothelial cells 8,9 led to our hypothesis that sHLA-G1 might bind to these cells and be involved in the modulation of placental angiogenesis or uterine vessel remodeling. 8 Several further observations are in line with such a novel function of HLA-G. Among them is that a defect of HLA-G expression in extravillous cytotrophoblast is associated with preeclampsia, 10,11 a common complication of pregnancy in which HLA-G ϩ endovascular trophoblast invasion of maternal spiral arteries is abrogated, compromising blood flow to the maternal interface. 12 In addition, it has been shown that HL...
Receptor tyrosine kinases (RTK) are targets for anticancer drug development. To date, only RTK inhibitors that block orthosteric binding of ligands and substrates have been developed. Here, we report the pharmacologic characterization of the chemical SSR128129E (SSR), which inhibits fibroblast growth factor receptor (FGFR) signaling by binding to the extracellular FGFR domain without affecting orthosteric FGF binding. SSR exhibits allosteric properties, including probe dependence, signaling bias, and ceiling effects. Inhibition by SSR is highly conserved throughout the animal kingdom. Oral delivery of SSR inhibits arthritis and tumors that are relatively refractory to anti-vascular endothelial growth factor receptor-2 antibodies. Thus, orally-active extracellularly acting small-molecule modulators of RTKs with allosteric properties can be developed and may offer opportunities to improve anticancer treatment.
From very recent studies, including molecular cloning of cDNA coding for membrane receptors, lysophosphatidic acid (LPA) reached the status of a novel phospholipid mediator with various biological activities. Another strong argument supporting this view was the discovery that LPA is secreted from activated platelets, resulting in its appearance in serum upon blood coagulation. The metabolic pathways as well as the enzymes responsible for LPA production are poorly characterized. However, a survey of literature data indicates some interesting issues which might be used as the basis for further molecular characterization of phospholipases A able to degrade phosphatidic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.