During the past five years, there has been an concerted program at SLAC and KEK to develop accelerator structures that meet the high gradient (65 MV/m) performance requirements for the Next Linear Collider (NLC) and Global Linear Collider (GLC) initiatives. The design that resulted is a 60-cm-long, traveling-wave structure with low group velocity and 150 degree per cell phase advance. It has an average iris size that produces an acceptable short-range wakefield, and dipole mode damping and detuning that adequately suppresses the long-range wakefield. More than eight such structures have operated at a 60 Hz repetition rate over 1000 hours at 65 MV/m with 400 ns long pulses, and have reached breakdown rate levels below the limit for the linear collider. Moreover, the structures are robust in that the rates continue to decrease over time, and if the structures are briefly exposed to air, the rates recover to their low levels within a few days. This paper presents a summary of the results from this program, which effectively ended last August with the selection of 'cold' technology for an International Linear Collider (ILC).
The proposed 8-GeV driver at FNAL [1] is based on ~430 independently phased SC resonators. Significant cost savings are expected by using an rf power fan-out from high-power klystrons to multiple cavities. Successful development of superconducting (SC) multi-spoke resonators operating at ~345-350 MHz provides a strong basis for their application in the front end of multi-GeV linear accelerators. Such a front-end operating at 325 MHz would enable direct transition to high-gradient 1300 MHz SC TESLA-style cavities at ~400 MeV. The proposed front end consists of 5 sections: a conventional RFQ, room-temperature (RT) cross-bar H-type (CH) cavities, single-, double-and triple-spoke superconducting resonators. It is effective to use short RT CH-cavities between the RFQ and SC sections in the energy range 3-10 MeV as is discussed below.
Novel configurations of superconducting magnets for helical muon beam cooling channels and demonstration experiments are being designed at Fermilab. The magnet system for helical cooling channels has to generate longitudinal solenoidal and transverse helical dipole and helical quadrupole fields. It was found that this complicated field configuration can be made by a helical solenoid, which is a set of circular coils shifted in transverse directions in such a way that their centers lay on the center of the helical beam orbit. This paper discusses the possibility of combining two such channels in one mechanical structure to allow beams of positive and negative muons to be cooled at the same time. The status of a short model helical solenoid prototype to study its magnetic and mechanical properties is also described.Index Terms-Helical solenoid, magnetic design, muon cooling, superconducting magnet system.
MANX is a 6-dimensional muon ionization-cooling experiment that has been proposed to Fermilab to demonstrate the use of a Helical Cooling Channel (HCC) for future muon colliders and neutrino factories. The HCC for MANX has solenoidal, helical dipole, and helical quadrupole magnetic components which diminish as the beam loses energy as it slow down in a liquid helium absorber inside the magnets. Additional magnets that provide emittance matching between the HCC and upstream and downstream spectrometers are also described as are the results of G4Beamline simulations of the beam cooling behavior of the complete magnet and absorber system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.