The genomic complexity of profound copy number aberrations has prevented effective molecular stratification of ovarian cancers. Here, to decode this complexity, we derived copy number signatures from shallow whole-genome sequencing of 117 high-grade serous ovarian cancer (HGSOC) cases, which were validated on 527 independent cases. We show that HGSOC comprises a continuum of genomes shaped by multiple mutational processes that result in known patterns of genomic aberration. Copy number signature exposures at diagnosis predict both overall survival and the probability of platinum-resistant relapse. Measurement of signature exposures provides a rational framework to choose combination treatments that target multiple mutational processes.
ObjectivesTo estimate the impact of the COVID-19 pandemic on cancer care services and overall (direct and indirect) excess deaths in people with cancer.MethodsWe employed near real-time weekly data on cancer care to determine the adverse effect of the pandemic on cancer services. We also used these data, together with national death registrations until June 2020 to model deaths, in excess of background (pre-COVID-19) mortality, in people with cancer. Background mortality risks for 24 cancers with and without COVID-19-relevant comorbidities were obtained from population-based primary care cohort (Clinical Practice Research Datalink) on 3 862 012 adults in England.ResultsDeclines in urgent referrals (median=−70.4%) and chemotherapy attendances (median=−41.5%) to a nadir (lowest point) in the pandemic were observed. By 31 May, these declines have only partially recovered; urgent referrals (median=−44.5%) and chemotherapy attendances (median=−31.2%). There were short-term excess death registrations for cancer (without COVID-19), with peak relative risk (RR) of 1.17 at week ending on 3 April. The peak RR for all-cause deaths was 2.1 from week ending on 17 April. Based on these findings and recent literature, we modelled 40% and 80% of cancer patients being affected by the pandemic in the long-term. At 40% affected, we estimated 1-year total (direct and indirect) excess deaths in people with cancer as between 7165 and 17 910, using RRs of 1.2 and 1.5, respectively, where 78% of excess deaths occured in patients with ≥1 comorbidity.ConclusionsDramatic reductions were detected in the demand for, and supply of, cancer services which have not fully recovered with lockdown easing. These may contribute, over a 1-year time horizon, to substantial excess mortality among people with cancer and multimorbidity. It is urgent to understand how the recovery of general practitioner, oncology and other hospital services might best mitigate these long-term excess mortality risks.
Background: Cancer and multiple non-cancer conditions are considered by the Centers for Disease Control and Prevention (CDC) as high risk conditions in the COVID-19 emergency. Professional societies have recommended changes in cancer service provision to minimize COVID-19 risks to cancer patients and health care workers. However, we do not know the extent to which cancer patients, in whom multi-morbidity is common, may be at higher overall risk of mortality as a net result of multiple factors including COVID-19 infection, changes in health services, and socioeconomic factors. Methods: We report multi-center, weekly cancer diagnostic referrals and chemotherapy treatments until April 2020 in England and Northern Ireland. We analyzed population-based health records from 3,862,012 adults in England to estimate 1-year mortality in 24 cancer sites and 15 non-cancer comorbidity clusters (40 conditions) recognized by CDC as high-risk. We estimated overall (direct and indirect) effects of COVID-19 emergency on mortality under different Relative Impact of the Emergency (RIE) and different Proportions of the population Affected by the Emergency (PAE). We applied the same model to the US, using Surveillance, Epidemiology, and End Results (SEER) program data. Results: Weekly data until April 2020 demonstrate significant falls in admissions for chemotherapy (45-66% reduction) and urgent referrals for early cancer diagnosis (70-89% reduction), compared to pre-emergency levels. Under conservative assumptions of the emergency affecting only people with newly diagnosed cancer (incident cases) at COVID-19 PAE of 40%, and an RIE of 1.5, the model estimated 6,270 excess deaths at 1 year in England and 33,890 excess deaths in the US. In England, the proportion of patients with incident cancer with ≥1 comorbidity was 65.2%. The number of comorbidities was strongly associated with cancer mortality risk. Across a range of model assumptions, and across incident and prevalent cancer cases, 78% of excess deaths occur in cancer patients with ≥1 comorbidity. Conclusion: We provide the first estimates of potential excess mortality among people with cancer and multimorbidity due to the COVID-19 emergency and demonstrate dramatic changes in cancer services. To better inform prioritization of cancer care and guide policy change, there is an urgent need for weekly data on cause-specific excess mortality, cancer diagnosis and treatment provision and better intelligence on the use of effective treatments for comorbidities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.