Generalized epilepsy with febrile seizures plus (GEFS(+)) is an important childhood genetic epilepsy syndrome with heterogeneous phenotypes, including febrile seizures (FS) and generalized epilepsies of variable severity. Forty unrelated GEFS(+) and FS patients were screened for mutations in the sodium channel beta-subunits SCN1B and SCN2B, and the second GEFS(+) family with an SCN1B mutation is described here. The family had 19 affected individuals: 16 with typical GEFS(+) phenotypes and three with other epilepsy phenotypes. Site-specific mutation within SCN1B remains a rare cause of GEFS(+), and the authors found no evidence to implicate SCN2B in this syndrome.
Nemaline myopathy (NM) is a clinically and genetically heterogeneous disorder characterized by muscle weakness and the presence of nemaline bodies (rods) in skeletal muscle. Disease-causing mutations have been reported in five genes, each encoding a protein component of the sarcomeric thin filament. Recently, we identified mutations in the muscle alpha-skeletal-actin gene (ACTA1) in a subset of patients with NM. In the present study, we evaluated a new series of 35 patients with NM. We identified five novel missense mutations in ACTA1, which suggested that mutations in muscle alpha-skeletal actin account for the disease in approximately 15% of patients with NM. The mutations appeared de novo and represent new dominant mutations. One proband subsequently had two affected children, a result consistent with autosomal dominant transmission. The seven patients exhibited marked clinical variability, ranging from severe congenital-onset weakness, with death from respiratory failure during the 1st year of life, to a mild childhood-onset myopathy, with survival into adulthood. There was marked variation in both age at onset and clinical severity in the three affected members of one family. Common pathological features included abnormal fiber type differentiation, glycogen accumulation, myofibrillar disruption, and "whorling" of actin thin filaments. The percentage of fibers with rods did not correlate with clinical severity; however, the severe, lethal phenotype was associated with both severe, generalized disorganization of sarcomeric structure and abnormal localization of sarcomeric actin. The marked variability, in clinical phenotype, among patients with different mutations in ACTA1 suggests that both the site of the mutation and the nature of the amino acid change have differential effects on thin-filament formation and protein-protein interactions. The intrafamilial variability suggests that alpha-actin genotype is not the sole determinant of phenotype.
This study investigated the development of prospective memory using tasks based on the prefrontal-lobe model. Three groups each of 30 children, adolescents, and young adults were compared on prospective-memory performance using ongoing tasks with two levels of cognitive demand (low and high), and two levels of importance (unstressed and stressed) of remembering prospective cues. The Self-Ordered Pointing Task (SOPT), Stroop Color Word Interference Test, and Tower of London were also used to assess relationships between prospective memory and prefrontal-lobe functions. The children remembered fewer prospective cues than either the adolescents or adults, but the adolescents and adults remembered equally well. This trend increased significantly as the cognitive demand of the ongoing tasks increased. However, stressing or not stressing the importance of remembering made no difference to prospective-memory performance. Performance on the SOPT and Stroop Colour Word Interference predicted performance on the high- but not on the low-demand condition. These findings implicate the maturation of the brain's prefrontal region in the development of prospective memory.
We report the clinical features in 27 Australasian patients with Angelman syndrome (AS), all with a DNA deletion involving chromosome 15(qll-13), spanning markers from D15S9 to D15S12, about 3*5 Mb of DNA. There were nine males and 18 females. All cases were sporadic. The mean age at last review (end of 1994) was 11*2 years (range 3 to 34 years). All patients were ataxic, severely retarded, and lacking recognisable speech. In all patients, head circumference (HC) at birth was normal but skewed in distribution, with 62-5% at the 10th centile. At last review HC was around the 50th centile in three patients (12-5%) while 15 had poor postnatal head growth. Short stature was not invariable, 5/26 (19%) were on or above the 50th centile. Hypotonia at birth was recorded in 15/24 (63%) and neonatal feeding difficulties were recorded in 20/26 (77%). Epilepsy was present in 26/27 (96%) with onset by the third year of life in 20 patients (83%). Improvement in epilepsy was reported in 11/16 patients (69%) with age. An abnormal EEG was reported in 25/25 patients. Hypopigmentation was present in 19/26 (73%). One patient had oculocutaneous albinism. Five patients could not walk independently. Of the remaining 22 who could walk, age of onset of walking ranged from 2 to 8 years. Disrupted sleep patterns were present in 18/ 21 patients (86%), with improvement in 9/ 12 patients (75%) over 10 years of age.The clinical features in this group of deletional AS patients were similar to previous reports, but these have not separated patients into subgroups based on DNA studies. In our group of deletional cases, 100% showed severe mental retardation, ataxic movements, absent language, abnormal EEG, happy disposition (noted in infancy in 95%), normal birth weight and head circumference at birth, and a large, wide mouth. These features occurred with a higher frequency than in AS patients as a whole. Our study also provided information on the evolution of the phenotype. The data can act as a benchmark for comparisons of AS resulting from other genetic mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.