Stromal cell-derived factor 1 (SDF1/ CXCL12) and its cognate receptor, CXCR4, play key regulatory roles in CD34 ؉ cell trafficking. We investigated whether AMD3100, a selective CXCR4 antagonist, could mobilize hematopoietic progenitor cells from marrow to peripheral blood in healthy human volunteers. Initially, 10 persons each received a single dose of AMD3100 (80 g/kg subcutaneously), which induced rapid, generalized leukocytosis associated with an increase in peripheral blood CD34 ؉ cells, representing pluripotent hematopoietic progenitors by in vitro colony-forming unit assays, from 3.8 ؎ 0.5/L to 20.7 ؎ 3.5/L at 6 hours. Subsequent dose-response studies showed a maximum increase in circulating CD34 ؉ cells from 2.6 ؎ 0.3/L to 40.4 ؎ 3.4/L at 9 hours after 240 g/kg AMD3100. Serial administration of AMD3100 (80 g/kg/d for 3 days) resulted in consistent, reversible increases in peripheral blood CD34 ؉ cells. AMD3100 was well tolerated and caused only mild, transient toxicity. These findings suggest potential clinical application of AMD3100 for CD34 ؉ cell mobilization and collection for hematopoietic stem cell transplantation.
The bicyclam AMD3100 (formula weight 830) blocks HIV-1 entry and membrane fusion via the CXCR4 co-receptor, but not via CCR5. AMD3100 prevents monoclonal antibody 12G5 from binding to CXCR4, but has no effect on binding of monoclonal antibody 2D7 to CCR5. It also inhibits binding of the CXC-chemokine, SDF-1alpha, to CXCR4 and subsequent signal transduction, but does not itself cause signaling and has no effect on RANTES signaling via CCR5. Thus, AMD3100 prevents CXCR4 functioning as both a HIV-1 co-receptor and a CXC-chemokine receptor. Development of small molecule inhibitors of HIV-1 entry is feasible.
Bicyclams are a novel class of antiviral compounds that are highly potent and selective inhibitors of the replication of HIV-1 and HIV-2. Surprisingly, however, when the prototype compound AMD3100 was tested against M-tropic virus strains such as BaL, ADA, JR-CSF, and SF-162 in human peripheral blood mononuclear cells, the compound was completely inactive. Because of the specific and potent inhibitory effect of AMD3100 on T-tropic viruses, but not M-tropic viruses, it was verified that AMD3100 interacts with the CXC-chemokine receptor CXCR4, the main coreceptor used by T-tropic viruses. AMD3100 dose dependently inhibited the binding of a specific CXCR4 monoclonal antibody to SUP-T1 cells as measured by flow cytometry. It did not inhibit the binding of the biotinylated CC-chemokine macrophage inflammatory protein (MIP) 1α or MIP-1β, ligands for the chemokine receptor CCR5 (the main coreceptor for M-tropic viruses). In addition, AMD3100 completely blocked (a) the Ca2+ flux at 100 ng/ml in lymphocytic SUP-T1 and monocytic THP-1 cells, and (b) the chemotactic responses of THP-1 cells induced by stromal cell–derived factor 1α, the natural ligand for CXCR4. Finally, AMD3100 had no effect on the Ca2+ flux induced by the CC-chemokines MIP-1α, regulated on activation normal T cell expressed and secreted (RANTES; also a ligand for CCR5), or monocyte chemoattractant protein 3 (a ligand for CCR1 and CCR2b), nor was it able to induce Ca2+ fluxes by itself. The bicyclams are, to our knowledge, the first low molecular weight anti-HIV agents shown to act as potent and selective CXCR4 antagonists.
AMD-3100, a bicyclam, is a novel agent that uniquely inhibits the entry of human immunodeficiency virus type 1 (HIV-1) into CD4؉ T cells via selective blockade of the chemokine CXCR-4 receptor. Twelve healthy volunteers were given AMD-3100 as a single 15-min intravenous infusion at 10, 20, 40, or 80 g/kg. Five subjects also received a single subcutaneous injection of AMD-3100 (40 or 80 g/kg). Three subjects received two escalating oral doses each (80 and 160 g/kg). All subjects tolerated their dose(s) well without any grade 2 toxicity or dose adjustment. Six subjects experienced mild, transient symptoms, primarily gastrointestinal in nature and not dose related. All subjects experienced a dose-related elevation of the white blood cell count, from 1.5 to 3.1 times the baseline, which returned to the baseline 24 h after dosing. AMD-3100 demonstrated dose proportionality for the maximum drug concentration in serum (C max ) and the area under the concentrationtime curve from 0 h to ؕ (AUC 0-ؕ ) over the entire dose range. At the highest intravenous dose (80 g/kg), the median C max was 515 (range, 470 to 521) ng/ml and the AUC 0-ؕ was 1,044 (range, 980 to 1,403) ng-h/ml. The median systemic absorption after subcutaneous dosing was 87% (range, 67 to 106%). No drug was detectable in the blood following oral dosing. Using a two-compartment model, the median pharmacokinetic parameter estimates (ranges) were as follows: volume of distribution, 0.34 (0.27 to 0.36) liter/kg; clearance, 1.30 (0.97 to 1.34) liters/h; elimination half-life, 3.6 (3.5 to 4.9) h. After a single, well-tolerated intravenous dose of AMD-3100, concentrations were sustained for 12 h above the in vitro antiretroviral 90% inhibitory concentrations and for 8 h above antiviral concentrations identified in the SCID-hu Thy/Liv mouse model of HIV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.