A long-term, consistent, high-resolution climate dataset for the North American domain, as a major improvement upon the earlier global reanalysis datasets in both resolution and accuracy, is presented.
The Rapid Refresh (RAP), an hourly updated assimilation and model forecast system, replaced the Rapid Update Cycle (RUC) as an operational regional analysis and forecast system among the suite of models at the NOAA/National Centers for Environmental Prediction (NCEP) in 2012. The need for an effective hourly updated assimilation and modeling system for the United States for situational awareness and related decision-making has continued to increase for various applications including aviation (and transportation in general), severe weather, and energy. The RAP is distinct from the previous RUC in three primary aspects: a larger geographical domain (covering North America), use of the community-based Advanced Research version of the Weather Research and Forecasting (WRF) Model (ARW) replacing the RUC forecast model, and use of the Gridpoint Statistical Interpolation analysis system (GSI) instead of the RUC three-dimensional variational data assimilation (3DVar). As part of the RAP development, modifications have been made to the community ARW model (especially in model physics) and GSI assimilation systems, some based on previous model and assimilation design innovations developed initially with the RUC. Upper-air comparison is included for forecast verification against both rawinsondes and aircraft reports, the latter allowing hourly verification. In general, the RAP produces superior forecasts to those from the RUC, and its skill has continued to increase from 2012 up to RAP version 3 as of 2015. In addition, the RAP can improve on persistence forecasts for the 1–3-h forecast range for surface, upper-air, and ceiling forecasts.
The Rapid Update Cycle (RUC), an operational regional analysis-forecast system among the suite of models at the National Centers for Environmental Prediction (NCEP), is distinctive in two primary aspects: its hourly assimilation cycle and its use of a hybrid isentropic-sigma vertical coordinate. The use of a quasi-isentropic coordinate for the analysis increment allows the influence of observations to be adaptively shaped by the potential temperature structure around the observation, while the hourly update cycle allows for a very current analysis and short-range forecast. Herein, the RUC analysis framework in the hybrid coordinate is described, and some considerations for high-frequency cycling are discussed. A 20-km 50-level hourly version of the RUC was implemented into operations at NCEP in April 2002. This followed an initial implementation with 60-km horizontal grid spacing and a 3-h cycle in 1994 and a major upgrade including 40-km horizontal grid spacing in 1998. Verification of forecasts from the latest 20-km version is presented using rawinsonde and surface observations. These verification statistics show that the hourly RUC assimilation cycle improves short-range forecasts (compared to longer-range forecasts valid at the same time) even down to the 1-h projection.
An overview of the National Oceanic and Atmospheric Administration’s (NOAA) current operational Smoke Forecasting System (SFS) is presented. This system is intended as guidance to air quality forecasters and the public for fine particulate matter (≤2.5 μm) emitted from large wildfires and agricultural burning, which can elevate particulate concentrations to unhealthful levels. The SFS uses National Environmental Satellite, Data, and Information Service (NESDIS) Hazard Mapping System (HMS), which is based on satellite imagery, to establish the locations and extents of the fires. The particulate matter emission rate is computed using the emission processing portion of the U.S. Forest Service’s BlueSky Framework, which includes a fuel-type database, as well as consumption and emissions models. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is used to calculate the transport, dispersion, and deposition of the emitted particulate matter. The model evaluation is carried out by comparing predicted smoke levels with actual smoke detected from satellites by the HMS and the Geostationary Operational Environmental Satellite (GOES) Aerosol/Smoke Product. This overlap is expressed as the figure of merit in space (FMS), the intersection over the union of the observed and calculated smoke plumes. Results are presented for the 2007 fire season (September 2006–November 2007). While the highest FMS scores for individual events approach 60%, average values for the 1 and 5 μg m−3 contours for the analysis period were 8.3% and 11.6%, respectively. FMS scores for the forecast period were lower by about 25% due, in part, to the inability to forecast new fires. The HMS plumes tend to be smaller than the corresponding predictions during the winter months, suggesting that excessive emissions predicted for the smaller fires resulted in an overprediction in the smoke area.
The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Weather Research and Forecasting model (WRF-ARW) with hourly data assimilation that covers the conterminous United States and Alaska and runs in real time at the NOAA National Centers for Environmental Prediction. Implemented operationally at NOAA/NCEP in 2014, the HRRR features 3-km horizontal grid spacing and frequent forecasts (hourly for CONUS and 3-hourly for Alaska). HRRR initialization is designed for optimal short-range forecast skill with a particular focus on the evolution of precipitating systems. Key components of the initialization are radar-reflectivity data assimilation, hybrid ensemble-variational assimilation of conventional weather observations, and a cloud analysis to initialize stratiform cloud layers. From this initial state, HRRR forecasts are produced out to 18 h every hour, and out to 48 h every 6 h, with boundary conditions provided by the Rapid Refresh system. Between 2014 and 2020, HRRR development was focused on reducing model bias errors and improving forecast realism and accuracy. Improved representation of the planetary boundary layer, subgrid-scale clouds, and land surface contributed extensively to overall HRRR improvements. The final version of the HRRR (HRRRv4), implemented in late 2020, also features hybrid data assimilation using flow-dependent covariances from a 3-km, 36-member ensemble (“HRRRDAS”) with explicit convective storms. HRRRv4 also includes prediction of wildfire smoke plumes. The HRRR provides a baseline capability for evaluating NOAA’s next-generation Rapid Refresh Forecast System, now under development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.