Background Effective rehabilitative therapies are needed for patients with long-term deficits after stroke. Methods In this multicenter, randomized, controlled trial involving 127 patients with moderate-to-severe upper-limb impairment 6 months or more after a stroke, we randomly assigned 49 patients to receive intensive robot-assisted therapy, 50 to receive intensive comparison therapy, and 28 to receive usual care. Therapy consisted of 36 1-hour sessions over a period of 12 weeks. The primary outcome was a change in motor function, as measured on the Fugl-Meyer Assessment of Sensorimotor Recovery after Stroke, at 12 weeks. Secondary outcomes were scores on the Wolf Motor Function Test and the Stroke Impact Scale. Secondary analyses assessed the treatment effect at 36 weeks. Results At 12 weeks, the mean Fugl-Meyer score for patients receiving robot-assisted therapy was better than that for patients receiving usual care (difference, 2.17 points; 95% confidence interval [CI], −0.23 to 4.58) and worse than that for patients receiving intensive comparison therapy (difference, −0.14 points; 95% CI, −2.94 to 2.65), but the differences were not significant. The results on the Stroke Impact Scale were significantly better for patients receiving robot-assisted therapy than for those receiving usual care (difference, 7.64 points; 95% CI, 2.03 to 13.24). No other treatment comparisons were significant at 12 weeks. Secondary analyses showed that at 36 weeks, robot-assisted therapy significantly improved the Fugl-Meyer score (difference, 2.88 points; 95% CI, 0.57 to 5.18) and the time on the Wolf Motor Function Test (difference, −8.10 seconds; 95% CI, −13.61 to −2.60) as compared with usual care but not with intensive therapy. No serious adverse events were reported. Conclusions In patients with long-term upper-limb deficits after stroke, robot-assisted therapy did not significantly improve motor function at 12 weeks, as compared with usual care or intensive therapy. In secondary analyses, robot-assisted therapy improved outcomes over 36 weeks as compared with usual care but not with intensive therapy. (ClinicalTrials.gov number, NCT00372411.)
Clinical recovery after stroke can be significant and has been attributed to plastic reorganization and recruitment of novel areas previously not engaged in a given task. As equivocal results have been reported in studies using single imaging or electrophysiological methods, here we applied an integrative multimodal approach to a group of well-recovered chronic stroke patients (n = 11; aged 50-81 years) with left capsular lesions. Focal activation during recovered hand movements was assessed with EEG spectral analysis and H2(15)O-PET with EMG monitoring, cortico-cortical connectivity with EEG coherence analysis (cortico-cortical coherence) and corticospinal connectivity with transcranial magnetic stimulation (TMS). As seen from comparisons with age-matched controls, our patients showed enhanced recruitment of the lateral premotor cortex of the lesioned hemisphere [Brodmann area (BA) 6], lateral premotor and to a lesser extent primary sensorimotor and parietal cortex of the contralesional hemisphere (CON-H; BA 4 and superior parietal lobule) and left cerebellum (patients versus controls, Z > 3.09). EEG coherence analysis showed that after stroke cortico-cortical connections were reduced in the stroke hemisphere but relatively increased in the CON-H (ANOVA, contrast analysis, P < 0.05), suggesting a shift of functional connectivity towards the CON-H. Nevertheless, fast conducting corticospinal transmission originated exclusively from the lesioned hemisphere. No direct ipsilateral motor evoked potentials (MEPs) could be elicited with TMS over the contralesional primary motor cortex (iM1) in stroke patients. We conclude that (i) effective recovery is based on enhanced utilization of ipsi- and contralesional resources, (ii) basic corticospinal commands arise from the lesioned hemisphere without recruitment of ('latent') uncrossed corticospinal tract fibres and (iii) increased contralesional activity probably facilitates control of recovered motor function by operating at a higher-order processing level, similar to but not identical with the extended network concerned with complex movements in healthy subjects.
Stroke is the leading cause of disability, causing impairments in movement and sensation. Animal models suggest that there is about a month of heightened plasticity in the brain early after stroke when most recovery from impairment occurs. This heightened plasticity occurs against background changes in excitatory/inhibitory balance, is apparent structurally as neurite remodeling, and changes in the extent and responsiveness of cortical maps. The best time for experience to improve outcome is unclear, but in animal models only very early (< 5 days from onset) and intense activities lead to increased histological damage. Conversely, late rehabilitation (>30 days) is much less effective both in terms of outcome and morphological changes. In clinical practice, rehabilitation after disabling strokes involves a relatively brief period of inpatient rehabilitation that does not come close to matching intensity levels investigated in animal models, and it involves training compensatory strategies with minimal impact on impairment. Research on the effect of Constraint-induced and robotic therapy has been conducted almost entirely in chronic stroke but earlier does seem better. Current rehabilitation treatments have a disappointingly modest effect on impairment early or late after stroke. Translation from animal models will require: (1) substantial increases in the intensity and dosage of treatments offered in the first month after stroke with an emphasis on impairment, (2) Treatment combination approaches, for example, non-invasive brain stimulation with robotics, based on current understanding of motor learning and brain plasticity, and (3) Research that emphasizes mechanistic phase II studies over premature phase III clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.