BACKGROUND High-density lipoprotein (HDL) may provide cardiovascular protection by promoting reverse cholesterol transport from macrophages. We hypothesized that the capacity of HDL to accept cholesterol from macrophages would serve as a predictor of atherosclerotic burden. METHODS We measured cholesterol efflux capacity in 203 healthy volunteers who underwent assessment of carotid artery intima–media thickness, 442 patients with angiographically confirmed coronary artery disease, and 351 patients without such angiographically confirmed disease. We quantified efflux capacity by using a validated ex vivo system that involved incubation of macrophages with apolipoprotein B–depleted serum from the study participants. RESULTS The levels of HDL cholesterol and apolipoprotein A-I were significant determinants of cholesterol efflux capacity but accounted for less than 40% of the observed variation. An inverse relationship was noted between efflux capacity and carotid intima–media thickness both before and after adjustment for the HDL cholesterol level. Furthermore, efflux capacity was a strong inverse predictor of coronary disease status (adjusted odds ratio for coronary disease per 1-SD increase in efflux capacity, 0.70; 95% confidence interval [CI], 0.59 to 0.83; P<0.001). This relationship was attenuated, but remained significant, after additional adjustment for the HDL cholesterol level (odds ratio per 1-SD increase, 0.75; 95% CI, 0.63 to 0.90; P = 0.002) or apolipoprotein A-I level (odds ratio per 1-SD increase, 0.74; 95% CI, 0.61 to 0.89; P = 0.002). Additional studies showed enhanced efflux capacity in patients with the metabolic syndrome and low HDL cholesterol levels who were treated with pioglitazone, but not in patients with hypercholesterolemia who were treated with statins. CONCLUSIONS Cholesterol efflux capacity from macrophages, a metric of HDL function, has a strong inverse association with both carotid intima–media thickness and the likelihood of angiographic coronary artery disease, independently of the HDL cholesterol level. (Funded by the National Heart, Lung, and Blood Institute and others.)
Scavenger receptor BI (SR-BIThe levels of plasma high density lipoproteins (HDL) 1 are inversely related to the incidence of atherosclerosis and coronary artery disease (1, 2). The protective effect of HDL is thought to involve the reverse transport of cholesterol from cells in the arterial wall to the liver for disposal (3, 4). The transfer of cholesterol from cells to HDL may result from aqueous diffusion (5, 6) and/or the interaction between a cell surface receptor and HDL (7). A number of HDL-binding proteins have been described (5, 7) but none has been shown to be an authentic HDL receptor mediating cholesterol efflux. Recently a member of the scavenger receptor family, scavenger receptor type B class I (SR-BI), was shown to bind HDL with high affinity and to mediate the selective cellular uptake of HDL cholesteryl ester (CE) (8). SR-BI is highly expressed in steroidogenic tissues and the liver (8 -11), and in vivo evidence suggests that SR-BI expression is under feedback regulation (10). While these results show that SR-BI is an HDL receptor that is likely to provide sterol for steroidogenesis, the exact role of SR-BI in the regulation of HDL metabolism and the maintenance of general cholesterol homeostasis is unknown.In the present study we used SR-BI-transfected cells to evaluate a possible role of SR-BI in HDL-mediated cellular cholesterol efflux. We also sought to establish a relationship between cholesterol efflux and the level of SR-BI expression in a variety of cell types. The results, together with our finding that SR-BI mRNA is expressed in the thickened intima of atheromatous aorta, suggest a potentially important role of SR-BI in the initial steps of cholesterol efflux in the arterial wall.
Macrophage ATP-binding cassette transporter A1 (ABCA1), scavenger receptor class B type I (SR-BI), and ABCG1 have been shown to promote cholesterol efflux to extracellular acceptors in vitro and influence atherosclerosis in mice, but their roles in mediating reverse cholesterol transport (RCT) from macrophages in vivo are unknown. Using an assay of macrophage RCT in mice, we found that primary macrophages lacking ABCA1 had a significant reduction in macrophage RCT in vivo, demonstrating the importance of ABCA1 in promoting macrophage RCT, however substantial residual RCT exists in the absence of macrophage ABCA1. Using primary macrophages deficient in SR-BI expression, we found that macrophage SR-BI, which was shown to promote cholesterol efflux in vitro, does not contribute to macrophage RCT in vivo. To investigate whether macrophage ABCG1 is involved in macrophage RCT in vivo, we used ABCG1-overexpressing, -knockdown, and -knockout macrophages. We show that increased macrophage ABCG1 expression significantly promoted while knockdown or knockout of macrophage ABCG1 expression significantly reduced macrophage RCT in vivo. Finally, we show that there was a greater decrease in macrophage RCT from cells where both ABCA1 and ABCG1 expression were knocked down than from ABCG1-knockdown cells. These results demonstrate that ABCA1 and ABCG1, but not SR-BI, promote macrophage RCT in vivo and are additive in their effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.