Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20–200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K–AKT–mTOR and β-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics.Research in contextFatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive to FASN inhibition are identified. These preclinical data provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers.
Healthy young children who acquire CMV have prolonged viral shedding into the urine and saliva, but whether this is attributable to limitations in viral-specific immune responses has not been explored. In this study, we found that otherwise immunocompetent young children after recent primary CMV infection accumulated markedly fewer CMV-specific CD4+ T cells that produced IFN-γ than did adults. These differences in CD4+ T cell function persisted for more than 1 year after viral acquisition, and did not apply to CMV-specific IFN-γ production by CD8+ T cells. The IFN-γ-producing CD4+ T cells of children or adults that were reactive with CMV Ags were mainly the CCR7low cell subset of memory (CD45R0highCD45RAlow) cells. The decreased IFN-γ response to CMV in children was selective, because their CCR7low memory CD4+ T cells and those of adults produced similar levels of this cytokine after stimulation with staphylococcal enterotoxin B superantigen. CD4+ T cells from children also had reduced CMV-specific IL-2 and CD154 (CD40 ligand) expression, suggesting an early blockade in the differentiation of viral-specific CD4+ T cells. Following CMV acquisition, children, but not adults, persistently shed virus in urine, and this was observable for at least 29 mo postinfection. Thus, CD4+ T cell-mediated immunity to CMV in humans is generated in an age-dependent manner, and may have a substantial role in controlling renal viral replication and urinary shedding.
Decades of preclinical and natural history studies have highlighted the potential of fatty acid synthase (FASN) as a bona fide drug target for oncology. This review will highlight the foundational concepts upon which this perspective is built. Published studies have shown that high levels of FASN in patient tumor tissues are present at later stages of disease and this overexpression predicts poor prognosis. Preclinical studies have shown that experimental overexpression of FASN in previously normal cells leads to changes that are critical for establishing a tumor phenotype. Once the tumor phenotype is established, FASN elicits several changes to the tumor cell and becomes intertwined with its survival. The product of FASN, palmitate, changes the biophysical nature of the tumor cell membrane; membrane microdomains enable the efficient assembly of signaling complexes required for continued tumor cell proliferation and survival. Membranes densely packed with phospholipids containing saturated fatty acids become resistant to the action of other chemotherapeutic agents. Inhibiting FASN leads to tumor cell death while sparing normal cells, which do not have the dependence of this enzyme for normal functions, and restores membrane architecture to more normal properties thereby resensitizing tumors to killing by chemotherapies. One compound has recently reached clinical studies in solid tumor patients and highlights the need for continued evaluation of the role of FASN in tumor cell biology. Significant advances have been made and much remains to be done to optimally apply this class of pharmacological agents for the treatment of specific cancers.
Palmitate, the enzymatic product of FASN, and palmitate-derived lipids support cell metabolism, membrane architecture, protein localization, and intracellular signaling. Tubulins are among many proteins that are modified post-translationally by acylation with palmitate. We show that FASN inhibition with TVB-3166 or TVB-3664 significantly reduces tubulin palmitoylation and mRNA expression. Disrupted microtubule organization in tumor cells is an additional consequence of FASN inhibition. FASN inhibition combined with taxane treatment enhances inhibition of in vitro tumor cell growth compared to treatment with either agent alone. In lung, ovarian, prostate, and pancreatic tumor xenograft studies, FASN inhibition and paclitaxel or docetaxel combine to inhibit xenograft tumor growth with significantly enhanced anti-tumor activity. Tumor regression was observed in 3 of 6 tumor xenograft models. FASN inhibition does not affect cellular taxane concentration in vitro. Our data suggest a mechanism of enhanced anti-tumor activity of the FASN and taxane drug combination that includes inhibition of tubulin palmitoylation and disruption of microtubule organization in tumor cells, as well as a sensitization of tumor cells to FASN inhibition-mediated effects that include gene expression changes and inhibition of β-catenin. Together, the results strongly support investigation of combined FASN inhibition and taxane treatment as a therapy for a variety of human cancers.
Background: We conducted a first-in-human dose-escalation study with the oral FASN inhibitor TVB-2640 to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D), as monotherapy and with a taxane. Methods: This completed open-label outpatient study was conducted at 11 sites in the United States and United Kingdom. Patients with previously-treated advanced metastatic solid tumors and adequate performance status and organ function were eligible. TVB-2640 was administered orally daily until PD. Dose escalation initially followed an accelerated titration design that switched to a standard 3 + 3 design after Grade 2 toxicity occurred. Disease-specific cohorts were enrolled at the MTD. Statistical analyses were primarily descriptive. Safety analyses were performed on patients who received at least 1 dose of study drug. (Clinicaltrials.gov identifier NCT02223247) Findings: The study was conducted from 21 November 2013 to 07 February 2017. Overall, 136 patients received TVB-2640, 76 as monotherapy (weight-based doses of 60 mg/m 2 to 240 mg/m 2 and flat doses of 200 and 250 mg) and 60 in combination, (weight-based doses of 60 mg/m 2 to 100 mg/m 2 and flat dose of 200 mg) (55 paclitaxel, 5 docetaxel). DLTs with TVB-2640 were reversible skin and ocular effects. The MTD/ RP2D was 100 mg/m 2 . The most common TEAEs (n,%) with TVB-2640 monotherapy were alopecia (46; 61%), PPE syndrome (35; 46%), fatigue (28; 37%), decreased appetite (20; 26%), and dry skin (17; 22%), and with TVB-2640+paclitaxel were fatigue (29 ; 53%), alopecia (25; 46%), PPE syndrome (25; 46%), nausea (22; 40%), and peripheral neuropathy (20; 36%). One fatal case of drug-related pneumonitis occurred with TVB-2640 +paclitaxel; no other treatment-related deaths occurred. Target engagement (FASN inhibition) and inhibition of lipogenesis were demonstrated with TVB-2640. The disease control rate (DCR) with TVB-2640 monotherapy was 42%; no patient treated with monotherapy had a complete or partial response (CR or PR). In
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.