We have generated a strain of mice lacking two DNA N-glycosylases of base excision repair (BER), NTH1 and NEIL1, homologs of bacterial Nth (endonuclease three) and Nei (endonuclease eight). Although these enzymes remove several oxidized bases from DNA, they do not remove the well-known carcinogenic oxidation product of guanine: 7,8-dihydro-8-oxoguanine (8-OH-Gua), which is removed by another DNA N-glycosylase, OGG1. The Nth1−/−Neil1−/− mice developed pulmonary and hepatocellular tumors in much higher incidence than either of the single knockouts, Nth1−/− and Neil1−/−. The pulmonary tumors contained, exclusively, activating GGT→GAT transitions in codon 12 of K-ras of their DNA. Such transitions contrast sharply with the activating GGT→GTT transversions in codon 12 of K-ras of the pathologically similar pulmonary tumors, which arose in mice lacking OGG1 and a second DNA N-glycosylase, MUTY. To characterize the biochemical phenotype of the knockout mice, the content of oxidative DNA base damage was analyzed from three tissues isolated from control, single and double knockout mice. The content of 8-OH-Gua was indistinguishable among all genotypes. In contrast, the content of 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) derived from adenine and guanine, respectively, were increased in some but not all tissues of Neil1−/− and Neil1−/−Nth1−/− mice. The high incidence of tumors in our Nth1−/−Neil1−/− mice together with the nature of the activating mutation in the K-ras gene of their pulmonary tumors, reveal for the first time, the existence of mutagenic and carcinogenic oxidative damage to DNA which is not 8-OH-Gua.
DNA polymerase (pol ) is a member of the X family of DNA polymerases that has been implicated in both base excision repair and non-homologous end joining through in vitro studies. However, to date, no phenotype has been associated with cells deficient in this DNA polymerase. Here we show that pol null mouse fibroblasts are hypersensitive to oxidative DNA damaging agents, suggesting a role of pol in protection of cells against the cytotoxic effects of oxidized DNA. Additionally, pol co-immunoprecipitates with an oxidized base DNA glycosylase, single-strand-selective monofunctional uracil-DNA glycosylase (SMUG1), and localizes to oxidative DNA lesions in situ. From these data, we conclude that pol protects cells against oxidative stress and suggest that it participates in oxidative DNA damage base excision repair.
Purification from calf thymus of a DNA N-glycosylase activity (HMUDG) that released 5-hydroxymethyluracil (5hmUra) from the DNA of Bacillus subtilis phage SPO1 was undertaken. Analysis of the most purified fraction by SDS-polyacrylamide gel electrophoresis revealed a multiplicity of protein species making it impossible to identify HMUDG by inspection. Therefore, we renatured the enzyme after SDS-polyacrylamide gel electrophoresis and assayed slices of the gel for DNA N-glycosylase activity directed against 5hmUra. Maximum enzymatic activity was identified between molecular mass markers 30 and 34 kDa. Protein was extracted from gel slices and subjected to tryptic digestion and analysis by mass spectrometry. Analysis revealed the presence of 11 peptides that were homologous or identical to the sequence of the recently characterized human single-stranded monofunctional uracil DNA N-glycosylase (hSMUG1). The cDNA of hSMUG1 was isolated and expressed as a recombinant glutathione S-transferase fusion protein that was shown to release 5hmUra with 20؋ the specific activity of the most purified bovine fraction. We conclude that hSMUG1 and HMUDG are the same protein.
5,6-dihydroxy-5,6-dihydrothymidine (thymidine glycol) is a major product of the reaction of thymidine with reactive oxygen species, including those generated by ionizing radiation. Thymidine glycol exists as 2 diastereomeric pairs by virtue of the chirality of the C(5) and C(6) atoms. A simple procedure is described for synthesizing and purifying each of the diastereomeric pairs separately. After brominating thymidine, the two trans 5-bromo-6-hydroxy-5,6-dihydrothymidine (thymidine bromohydrin) C(5) diastereomers were easily separated by High Performance Liquid Chromatography. Each thymidine bromohydrin was quantitatively converted to the corresponding diastereomeric thymidine glycol pair by reflux in aqueous solution. The concentrations at equilibrium of the cis (5S,6R),(5R,6S) and trans (5S,6S),(5R,6R) forms of the thymidine glycol diastereomers were determined and were 80% cis and 20% trans for the 5S pair and 87% cis and 13% trans for the 5R pair. At equilibrium, the rate of cis-trans epimerization of the two sets of diastereomers was essentially identical. The 5S diastereomeric pair was significantly more alkali labile than the 5R pair due to the higher concentration of the 5S trans epimer at equilibrium. This differential alkali lability was also manifest when the thymine glycol moiety was present in chemically oxidized poly(dA-dT).poly(dA-dT) indicating that the chemical differences between the diastereomeric pairs are preserved in DNA. These chemical differences may affect the biological properties of this important oxidative derivative of thymine in DNA.
Escherichia coli endonuclease III and mammalian repair enzymes cleave UV-irradiated DNA at AP sites formed by the removal of cytosine photoproducts by the DNA glycosylase activity of these enzymes. Poly(dG-[3H]dC) was UV irradiated and incubated with purified endonuclease III. 3H-Containing material was released in a fashion consistent with Michaelis-Menten kinetics. This 3H material was determined to be cytosine by chromatography in two independent systems and microderivatization. 3H-Containing material was not released from nonirradiated copolymer. When poly(dA-[3H]dU) was UV irradiated, endonuclease III released 3H-containing material that coeluted with uracil hydrate (6-hydroxy-5,6-dihydrouracil). Similar results are obtained by using extracts of HeLa cells. There results indicate that the modified cytosine residue recognized by endonuclease III and the mammalian enzyme is cytosine hydrate (6-hydroxy-5,6-dihydrocytosine). Once released from DNA through DNA-glycosylase action, the compound eliminates water, reverting to cytosine. This is consistent with the known instability of cytosine hydrate. The repairability of cytosine hydrate in DNA suggests that it is stable in DNA and potentially genotoxic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.