BackgroundWe published the Canadian 2003 International Consensus Algorithm for the Diagnosis, Therapy, and Management of Hereditary Angioedema (HAE; C1 inhibitor [C1-INH] deficiency) and updated this as Hereditary angioedema: a current state-of-the-art review: Canadian Hungarian 2007 International Consensus Algorithm for the Diagnosis, Therapy, and Management of Hereditary Angioedema.ObjectiveTo update the International Consensus Algorithm for the Diagnosis, Therapy and Management of Hereditary Angioedema (circa 2010).MethodsThe Canadian Hereditary Angioedema Network (CHAEN)/Réseau Canadien d'angioédème héréditaire (RCAH) http://www.haecanada.com and cosponsors University of Calgary and the Canadian Society of Allergy and Clinical Immunology (with an unrestricted educational grant from CSL Behring) held our third Conference May 15th to 16th, 2010 in Toronto Canada to update our consensus approach. The Consensus document was reviewed at the meeting and then circulated for review.ResultsThis manuscript is the 2010 International Consensus Algorithm for the Diagnosis, Therapy and Management of Hereditary Angioedema that resulted from that conference.ConclusionsConsensus approach is only an interim guide to a complex disorder such as HAE and should be replaced as soon as possible with large phase III and IV clinical trials, meta analyses, and using data base registry validation of approaches including quality of life and cost benefit analyses, followed by large head-to-head clinical trials and then evidence-based guidelines and standards for HAE disease management.
Summary. Although immune tolerance induction (ITI) has been used for 30 years to eliminate inhibitors and restore normal factor pharmacokinetics in patients with hemophilia, there is a paucity of scientific evidence to guide therapeutic decisionmaking. In an effort to provide direction for physicians and hemophilia treatment center staff members, an international panel of hemophilia opinion leaders met to develop consensus recommendations for ITI in patients with severe and mild hemophilia A and hemophilia B. These recommendations draw on the available published literature and the collective clinical experience of the group and are rated based on the level of supporting evidence .
Chitosan-GP/blood implants applied in conjunction with drilling, compared to drilling alone, elicited a more hyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair could provide progenitors, anabolic factors and nutrients that aid in the formation of hyaline cartilage.
The modification of glutamic acid residues to ␥-carboxyglutamic acid (Gla) is a post-translational modification catalyzed by the vitamin K-dependent enzyme ␥-glutamylcarboxylase. Despite ubiquitous expression of the ␥-carboxylation machinery in mammalian tissues, only 12 Gla-containing proteins have so far been identified in humans. Because bone tissue is the second most abundant source of Gla-containing proteins after the liver, we sought to identify Gla proteins secreted by bone marrow-derived mesenchymal stromal cells (MSCs). We used a proteomics approach to screen the secretome of MSCs with a combination of two-dimensional gel electrophoresis and tandem mass spectrometry. The most abundant Gla-containing protein secreted by MSCs was identified as periostin, a previously unrecognized ␥-carboxylated protein. In silico amino acid sequence analysis of periostin demonstrated the presence of four consensus ␥-carboxylase recognition sites embedded within fasciclin-like protein domains. The carboxylation of periostin was confirmed by immunoprecipitation and purification of the recombinant protein. Carboxylation of periostin could be inhibited by warfarin in MSCs, demonstrating its dependence on the presence of vitamin K. We were able to demonstrate localization of carboxylated periostin to bone nodules formed by MSCs in vitro, suggesting a role in extracellular matrix mineralization. Our data also show that another fasciclin I-like protein, ig-h3, contains Gla. In conclusion, periostin is a member of a novel vitamin K-dependent ␥-carboxylated protein family characterized by the presence of fasciclin domains. Furthermore, carboxylated periostin is produced by bone-derived cells of mesenchymal lineage and is abundantly found in mineralized bone nodules in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.