We previously described the structural organization of P25, a member of the major-intrinsic-protein family found in the digestive tract of homopteran sap-sucking insects [Beuron, F., Le Cahérec, F., Guillam, M. T., Cavalier, A., Garret, A., Tassan, J. P., Delamarche, C., Schultz, P., Mallouh, V., Rolland, J. P., Hubert, J.F., Gouranton, J. & Thomas, D. (1995) J. Biol. Chem. 270, 17414-17422]. We demonstrated, by means of introducing P25 tetramers into the membranes of Xenopus oocytes, that this protein exhibits functional properties similar to those of aquaporin 1, the archetypal water channel [Le Cahérec, F., Bron, P., Verbavatz, J. M., Garret, A., Morel, G., Cavalier, A., Bonnec, G., Thomas, D., Gouranton, J. & Hubert, J.F. (1996) J. Cell Sci. 109, 1285-1295]. In the present work, we cloned a full-length cDNA from a Cicadella viridis library with an open reading frame of 765 bp that encoded a 26-kDa protein whose sequence was 43, 40, 36 and 36% identical to aquaporins 1, 2, z and tonoplast intrinsic protein gamma, respectively. Translation of the corresponding RNA in Xenopus oocytes generated a polypeptide that was specifically recognized by polyclonal antibodies raised against native P25. Expression of the protein in Xenopus oocyte membranes was assessed by immunocytochemistry and led to a 15-fold increase of osmotic membrane water permeability. This increase was inhibited by HgCl2. The permeability had an Arrhenius activation energy of 11.7 kJ/mol. We called this protein Cicadella aquaporin (AQPcic). The oocytes expressing Cicadella aquaporin were less sensitive to HgCl2 than oocytes expressing aquaporin 1. In the Xenopus oocyte system, Cicadella aquaporin failed to transport glycerol, urea and ions. It exhibited permeabilities to ethylene glycol and formamide similar to those measured for aquaporin 1 under the same conditions.
The MIP (major intrinsic protein) proteins constitute a channel family of currently 150 members that have been identified in cell membranes of organisms ranging from bacteria to man. Among these proteins, two functionally distinct subgroups are characterized: aquaporins that allow specific water transfer and glycerol channels that are involved in glycerol and small neutral solutes transport. Since the flow of small molecules across cell membranes is vital for every living organism, the study of such proteins is of particular interest. For instance, aquaporins located in kidney cell membranes are responsible for reabsorption of 150 liters of water/ day in adult human. To understand the molecular mechanisms of solute transport specificity, we analyzed mutant aquaporins in which highly conserved residues have been substituted by amino acids located at the same positions in glycerol channels. Here, we show that substitution of a tyrosine and a tryptophan by a proline and a leucine, respectively, in the sixth transmembrane helix of an aquaporin leads to a switch in the selectivity of the channel, from water to glycerol.Based on amino acid sequence, members of the MIP 1 family are predicted to share a common topology consisting in 6 transmembrane domains connected by 5 loops (A-E). From biochemical and biophysical data, a model representing these proteins as "hourglasses" has been proposed (1) (Fig. 1A). In this model, the channel pore is constituted by the junction of loops B and E that overlap midway between the leaflets of the membrane. Recently, the three-dimensional structure of the first identified aquaporin, AQP1 (2), has been obtained and has defined that the protein complex is constituted by four monomers (3-5). Each monomer is formed by six tilted ␣ helices spanning the membrane bilayer and surrounding a central density zone. This zone represents likely the narrowest segment of the water pore and may be constituted by loops B and E according to the hourglass model. As opposed to the increasing amount of data aiming to determine aquaporins structure, no study concerning glycerol channels has been reported, but considering their high level of identity, it was assumed that they had the same structural organization. Using a biochemical approach, we showed recently that an insect aquaporin, AQPcic (6), is tetrameric in cell membrane, like AQP1, whereas the glycerol channel of Escherichia coli (GlpF) is a monomer (7). These results suggest that oligomerization of MIP proteins could be involved in transport selectivity. In order to elucidate molecular mechanisms that are accountable of the channel selectivity, we have developed a strategy consisting in a systematic comparison of the physico-chemical properties of amino acids at each position in multiple sequence alignments (8). We have identified five positions (P1-P5) corresponding to amino acid residues conserved in aquaporins and glycerol channels but with highly different physico-chemical properties in the two subgroups. Interestingly, four positions (P2, P3, P...
The major intrinsic protein (MIP) family includes water channels aquaporins (AQPs) and facilitators for small solutes such as glycerol (GlpFs). Velocity sedimentation on sucrose gradients demonstrates that heterologous AQPcic expressed in yeast or Xenopus oocytes behaves as an homotetramer when extracted by n-octyl -D-glucopyranoside (OG) and as a monomer when extracted by SDS. We performed an analysis of GlpF solubilized from membranes of Escherichia coli or of mRNA-injected Xenopus oocytes. The GlpF protein extracted either by SDS or by nondenaturing detergents, OG and Triton X-100, exhibits sedimentation coefficients only compatible with a monomeric form of the protein in micelles. We then substituted in loop E of AQPcic two amino acids predicted to play a role in the functional/structural properties of the MIPs. In two expression systems, yeast and oocytes, the mutant AQPcic-S205D is monomeric in OG and in SDS. The A209K mutation does not modify the tetrameric form of the heterologous protein in OG. This study shows that the serine residue at position 205 is essential for AQPcic tetramerization. Because the serine in this position is highly conserved among aquaporins and systematically replaced by an acid aspartic in GlpFs, we postulate that glycerol facilitators are monomers whereas aquaporins are organized in tetramers. Our data suggest that the role of loop E in MIP properties partly occurs through its ability to allow oligomerization of the proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.