Summary Tumor cell metastasis is facilitated by “pre-metastatic niches” formed in destination organs by invading bone marrow-derived cells (BMDCs). Lysyl oxidase (LOX) is critical for pre-metastatic niche formation. LOX secreted by hypoxic breast tumor cells accumulates at pre-metastatic sites, cross-links collagen-IV in the basement membrane, and is essential for CD11b+ myeloid cell recruitment. CD11b+ cells adhere to cross-linked collagen-IV and produce matrix metalloproteinase-2 which cleaves collagen, enhancing the invasion and recruitment of BMDCs and metastasizing tumor cells. LOX inhibition prevents CD11b+ cell recruitment and metastatic growth. CD11b+ cells and LOX also co-localize in biopsies of human metastases. Our findings demonstrate a critical role for LOX in pre-metastatic niche formation and support targeting LOX for the treatment and prevention of metastatic disease.
Model iron(II) porphyrin complexes for the active site of myoglobin and oxymyoglobin have been synthesized and fully characterized by Mossbauer, electronic, and infrared spectral analysis, magnetic susceptibility, and X-ray crystallography. The synthesis is reported for the "picket fence porphyrin," mero-tetra(a,a,a',a-o-pivalamidophenyl)porphyrin, which has great steric bulk creating a nonprotic cavity on one side of the porphyrin. The unsaturated ferrous complex, 1, reacts with strong field ligands to give six-coordinate, diamagnetic complexes, 2. The complexes, 2, react reversibly with oxygen, in solution at 25°. Crystalline diamagnetic dioxygen complexes, 3, having 1-methylimidazole or 1-n-butylimidazole as axial ligands were isolated and characterized. The complex, 3, contains O2 bound "end-on" with an Fe-O-O angle of 136 (4)°. A dioxygen complex with tetrahydrofuran as an axial base, 4, was also prepared and appears to be paramagnetic (2.4 BM). Carbonyl complexes with imidazoles (i-co = 1965 cm-1) and THF (veo = 1955 cm-1) as axial ligands are all diamagnetic.The dioxygen complexes, 3 and 4, show no vo2 at 25°but a strong, sharp band is seen at 1385 cm-1 at -175°. The complexes are thus described as containing coordinated singlet ( ) oxygen. The remarkable stability of the complexes, 3 and 4, and their Mossbauer and spectral properties are discussed.
Tumour metastasis is a complex process involving reciprocal interplay between cancer cells and host stroma at both primary and secondary sites, and is strongly influenced by microenvironmental factors such as hypoxia1. Tumour-secreted proteins play a crucial role in these interactions2-5 and present strategic therapeutic potential. Metastasis of breast cancer to the bone affects approximately 85% of patients with advanced disease and renders them largely untreatable6. Specifically, osteolytic bone lesions, where bone is destroyed, lead to debilitating skeletal complications and increased patient morbidity and mortality6,7. The molecular interactions governing the early events of osteolytic lesion formation are currently unclear. Here we show hypoxia to be specifically associated with bone relapse in ER-negative breast cancer patients. Global quantitative analysis of the hypoxic secretome identified Lysyl Oxidase (LOX) as significantly associated with bone-tropism and relapse. High expression of LOX in primary breast tumours or systemic delivery of LOX leads to osteolytic lesion formation whereas silencing or inhibition of LOX activity abrogates tumour-driven osteolytic lesion formation. We identify LOX as a novel regulator of NFATc1-driven osteoclastogenesis, independent of RANK Ligand, which disrupts normal bone homeostasis leading to the formation of focal pre-metastatic lesions. We show that these lesions subsequently provide a platform for circulating tumour cells to coloniseCorrespondence and requests for materials should be addressed to janine.erler@bric.ku.dk and a.gartland@shef.ac.uk.
Tumor metastasis is a highly complex, dynamic, and inefficient process involving multiple steps, yet it accounts for more than 90% of cancer-related deaths. Although it has long been known that fibrotic signals enhance tumor progression and metastasis, the underlying molecular mechanisms are still unclear. Identifying events involved in creating environments that promote metastatic colonization and growth are critical for the development of effective cancer therapies. Here, we show a critical role for lysyl oxidase (LOX) in establishing a milieu within fibrosing tissues that is favorable to growth of metastastic tumor cells. We show that LOX-dependent collagen crosslinking is involved in creating a growth-permissive fibrotic microenvironment capable of supporting metastatic growth by enhancing tumor cell persistence and survival. We show that therapeutic targeting of LOX abrogates not only the extent to which fibrosis manifests, but also prevents fibrosis-enhanced metastatic colonization. Finally, we show that the LOXmediated collagen crosslinking directly increases tumor cell proliferation, enhancing metastatic colonization and growth manifesting in vivo as increased metastasis. This is the first time that crosslinking of collagen I has been shown to enhance metastatic growth. These findings provide an important link between ECM homeostasis, fibrosis, and cancer with important clinical implications for both the treatment of fibrotic disease and cancer. Cancer Res; 73(6);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.