The comprehensive characterization of human leukocyte antigen (HLA) genomic sequences remains a challenging problem. Despite the significant advantages of next-generation sequencing (NGS) in the field of Immunogenetics, there has yet to be a single solution for unambiguous, accurate, simple, cost-effective, and timely genotyping necessary for all clinical applications. This report demonstrates the benefits of nanopore sequencing introduced by Oxford Nanopore Technologies (ONT) for HLA genotyping. Samples (n = 120) previously characterized at high-resolution three-field (HR-3F) for 11 loci were assessed using ONT sequencing paired to a single-plex PCR protocol (Holotype) and to two multiplex protocols OmniType (Omixon) and NGSgo ® -MX6-1 (GenDx). The results demonstrate the potential of nanopore sequencing for delivering accurate HR-3F typing with a simple, rapid, and cost-effective protocol. The protocol is applicable to time-sensitive applications, such as deceased donor typings, enabling better assessments of compatibility and epitope analysis. The technology also allows significantly shorter turnaround time for multiple samples at a lower cost. Overall, the nanopore technology appears to offer a significant advancement over current next-generation sequencing platforms as a single solution for all HLA genotyping needs.
HLA allelic variation has been well studied and documented in many parts of the world. However, African populations have been relatively under‐represented in studies of HLA variation. We have characterized HLA variation from 489 individuals belonging to 13 ethnically diverse populations from rural communities from the African countries of Botswana, Cameroon, Ethiopia, and Tanzania, known to practice traditional subsistence lifestyles using next generation sequencing (Illumina) and long‐reads from Oxford Nanopore Technologies. We identified 342 distinct alleles among the 11 HLA targeted genes: HLA‐A, ‐B, ‐C, ‐DRB1, ‐DRB3, ‐DRB4, ‐DRB5, ‐DQA1, ‐DQB1, ‐DPA1, and ‐DPB1, with 140 of those alleles containing novel sequences that were submitted to the IPD‐IMGT/HLA database. Sixteen of the 140 alleles contained novel content within the exonic regions of the genes, while 110 alleles contained novel intronic variants. Four alleles were found to be recombinants of already described HLA alleles and 10 alleles extended the sequence content of already described alleles. All 140 alleles include complete allelic sequence from the 5′ UTR to the 3′ UTR that are inclusive of all exons and introns. This report characterizes the HLA allelic variation from these individuals and describes the novel allelic variation present within these specific African populations.
We have developed a protocol regarding the genomic characterization of the MICA gene by next generation sequencing (NGS). The amplicon includes the full length of the gene and is about 13 kb. A total of 156 samples were included in the study. Ninety‐seven of these samples were previously characterized at MICA by legacy methods (Sanger or sequence specific oligonucleotide) and were used to evaluate the accuracy, precision, specificity, and sensitivity of the assay. An additional 59 DNA samples of unknown ethnicity volunteers from the United States were only genotyped by NGS. Samples were chosen to contain a diverse set of alleles. Our NGS approach included a first round of sequencing on the Illumina MiSeq platform and a second round of sequencing on the MinION platform by Oxford Nanopore Technology (ONT), on selected samples for the purpose of either characterizing new alleles or setting phase among multiple polymorphisms to resolve ambiguities or generate complete sequence for alleles that were only partially reported in the IMGT/HLA database. Complete consensus sequences were generated for every allele sequenced with ONT, extending from the 5′ untranslated region (UTR) to the 3′ UTR of the MICA gene. Thirty‐two MICA sequences were submitted to the IMGT/HLA database including either new alleles or filling up the gaps (exonic, intronic and/or UTRs) of already reported alleles. Some of the challenges associated with the characterization of these samples are discussed.
Introduction: Components of the immune response have previously been associated with the pathophysiology of atopic dermatitis (AD), specifically the Human Leukocyte Antigen (HLA) Class II region via genome-wide association studies, however the exact elements have not been identified.Methods: This study examines the genetic variation of HLA Class II genes using next generation sequencing (NGS) and evaluates the resultant amino acids, with particular attention on binding site residues, for associations with AD. The Genetics of AD cohort was used to evaluate HLA Class II allelic variation on 464 subjects with AD and 384 controls.Results: Statistically significant associations with HLA-DP α and β alleles and specific amino acids were found, some conferring susceptibility to AD and others with a protective effect. Evaluation of polymorphic residues in DP binding pockets revealed the critical role of P1 and P6 (P1: α31M + (β84G or β84V) [protection]; α31Q + β84D [susceptibility] and P6: α11A + β11G [protection]) and were replicated with a national cohort of children consisting of 424 AD subjects. Independently, AD susceptibility-associated residues were associated with the G polymorphism of SNP rs9277534 in the 3’ UTR of the HLA-DPB1 gene, denoting higher expression of these HLA-DP alleles, while protection-associated residues were associated with the A polymorphism, denoting lower expression.Discussion: These findings lay the foundation for evaluating non-self-antigens suspected to be associated with AD as they potentially interact with particular HLA Class II subcomponents, forming a complex involved in the pathophysiology of AD. It is possible that a combination of structural HLA-DP components and levels of expression of these components contribute to AD pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.