LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10-240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR's new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
4Cosmic rays are the highest energy particles found in nature. Measurements of the mass composition of cosmic rays between 10 17 eV and 10 18 eV are essential to understand whether this energy range is dominated by Galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal 1 comes from accelerators capable of producing cosmic rays of these energies 2 . Cosmic rays initiate cascades of secondary particles (air showers) in the atmosphere and their masses are inferred from measurements of the atmospheric depth of the shower maximum, X max 3 , or the composition of shower particles reaching the ground 4 .Current measurements 5 suffer from either low precision, and/or a low duty cycle. Radio detection of cosmic rays 6-8 is a rapidly developing technique 9 , suitable for determination of X max 10, 11 with a duty cycle of in principle nearly 100%. The radiation is generated by the separation of relativistic charged particles in the geomagnetic field and a negative charge excess in the shower front 6, 12 . Here we report radio measurements of X max with a mean precision of 16 g/cm 2 between 10 17 − 10 17.5 eV. Because of the high resolution in X max we can determine the mass spectrum and find a mixed composition, containing a light mass fraction of ∼ 80%. Unless the extragalactic component becomes significant already below 10 17.5 eV, our measurements indicate an additional Galactic component dominating at this energy range.Observations were made with the Low Frequency Array (LOFAR 13 ), a radio telescope consisting of thousands of crossed dipoles, with built-in air shower detection capability 14 . LOFAR records the radio signals from air showers continuously while running astronomical observations simultaneously. It comprises a scintillator array (LORA), that triggers the readout of buffers, stor-5 ing the full waveforms received by all antennas.We have selected air showers from the period June 2011 -January 2015 with radio pulses in at least 192 antennas. The total uptime was ∼150 days, limited by construction and commissioning of the telescope. Showers that occurred within an hour from lightning activity, or have a polarisation pattern that is indicative of influences from atmospheric electric fields are excluded from the sample 15 .Radio intensity patterns from air showers are asymmetric due to the interference between geomagnetic and charge excess radiation. They can be reproduced from first principles by summing the radio contributions of all electrons and positrons in the shower. We use the radio simulation code CoREAS 16 , a plug-in of CORSIKA 17 , which follows this approach.It has been shown that X max can be accurately reconstructed from densely sampled radio measurements 18 . We use a hybrid approach, simultaneously fitting the radio and particle data. The radio component is very sensitive to X max , while the particle component is used for the energy measurement.The fit contains four free parameters: the shower core position (x, y), and scaling factors for the partic...
Abstract. The aimed high sensitivities and large fields of view of the new generation of interferometers impose to reach high dynamic range of order ∼1:10 6 to 1:10 8 in the case of the Square Kilometer Array. The main problem is the calibration and correction of the Direction Dependent Effects (DDE) that can affect the electromagnetic field (antenna beams, ionosphere, Faraday rotation, etc.). As shown earlier the A-Projection is a fast and accurate algorithm that can potentially correct for any given DDE in the imaging step. With its very wide field of view, low operating frequency (∼ 30 − 250 MHz), long baselines, and complex station-dependent beam patterns, the Low Frequency Array (LOFAR) is certainly the most complex SKA precursor. In this paper we present a few implementations of A-Projection applied to LOFAR that can deal with non-unitary station beams and non-diagonal Mueller matrices. The algorithm is designed to correct for all the DDE, including individual antenna, projection of the dipoles on the sky, beam forming and ionospheric effects. We describe a few important algorithmic optimizations related to LOFAR's architecture allowing us to build a fast imager. Based on simulated datasets we show that A-Projection can give dramatic dynamic range improvement for both phased array beams and ionospheric effects. We will use this algorithm for the construction of the deepest extragalactic surveys, comprising hundreds of days of integration.
Aims. This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods. We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30−78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz/1 s resolution. Results. We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFAR's nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions. Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills.
on behalf of the LOFAR CollaborationOne of the science drivers of the new Low Frequency Array (LOFAR) is large-area surveys of the low-frequency radio sky. Realizing this goal requires automated processing of the interferometric data, such that fully calibrated images are produced by the system during survey operations. The LOFAR Imaging Pipeline is the tool intended for this purpose, and is now undergoing significant commissioning work. The pipeline is now functional as an automated processing chain. Here we present several recent LOFAR images that have been produced during the still ongoing commissioning period. These early LOFAR images are representative of some of the science goals of the commissioning team members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.