1 Mycophenolic acid (MPA), is primarily metabolized in the liver to 7-O-MPA-b-glucuronide (MPAG). Using RP-h.p.l.c. we observed three further MPA metabolites, M-1, M-2, M-3, in plasma of transplant recipients on MMF therapy. To obtain information on the structure and source of these metabolites: (A) h.p.l.c. fractions containing either metabolite or MPA were collected and analysed by tandem mass spectrometry; (B) the metabolism of MPA was studied in human liver microsomes in the presence of UDP-glucuronic acid, UDP-glucose or NADPH; (C) hydrolysis of metabolites was investigated using b-glucosidase, b-glucuronidase or NaOH; (D) cross-reactivity of each metabolite was tested in an immunoassay for MPA (EMIT).
During the last few decades, increasing interest in biological surfactants led to an intensification of research for the cost-efficient production of biosurfactants compared with traditional petrochemical surface-active components. The quest for alternative production strains also is associated with new demands on biosurfactant analysis. The present paper gives an overview of existing analytical methods, based on the example of rhamnolipids. The methods reviewed range from simple colorimetric testing to sophisticated chromatographic separation coupled with detection systems like mass spectrometry, by means of which detailed structural information is obtained. High-performance liquid chromatography (HPLC) coupled with mass spectrometry currently presents the most precise method for rhamnolipid identification and quantification. Suitable approaches to accelerate rhamnolipid quantification for better control of biosurfactant production are HPLC analysis directly from culture broth by adding an internal standard or Fourier transform infrared attenuated total reflectance spectroscopy measurements of culture broth as a possible quasi-online quantification method in the future. The search for alternative rhamnolipid-producing strains makes a structure analysis and constant adaptation of the existing quantification methods necessary. Therefore, simple colorimetric tests based on whole rhamnolipid content can be useful for strain and medium screening. Furthermore, rhamnolipid purification from a fermentation broth will be considered depending on the following application.
Photoconductivity is ac haracteristic property of semi-conductors.H erein, we present ap hoto-conducting crystalline metal-organic framework (MOF) thin film with an on-off photocurrent ratio of two orders of magnitude.These oriented, surface-mounted MOF thin films (SURMOFs), contain porphyrin in the framework backbone and C 60 guests,l oaded in the pores using al ayer-by-layer process.B y comparison with results obtained for reference MOF structures and based on DFT calculations,w ec onclude that donoracceptor interactions between the porphyrin of the host MOF and the C 60 guests give rise to ar apid charge separation. Subsequently,h oles and electrons are transported through separate channels formed by porphyrin and by C 60 ,r espectively.The ability to tune the properties and energy levels of the porphyrin and fullerene,a long with the controlled organization of donor-acceptor pairs in this regular framework offers potential to increase the photoconduction on-off ratio.
Biological responses of cells and organisms to nanoparticle exposure crucially depend on the properties of the protein adsorption layer ("protein corona") forming on nanoparticle surfaces and their characterization is a crucial step toward a deep, mechanistic understanding of their build-up. Previously, adsorption of one type of model protein on nanoparticles was systematically studied in situ by using fluorescence correlation spectroscopy. Here, the first such study of interactions is presented between water-solubilized CdSe/ZnS quantum dots (QDs) and a complex biofluid, human blood serum. Despite the large number of proteins in serum, a protein layer of well-defined (average) thickness forming on QD surfaces is observed. Both the thickness and the apparent binding affinity depend on the type of QD surface ligand. Kinetic experiments reveal that the protein corona formed from serum is irreversibly bound, whereas the one formed from human serum albumin was earlier observed to be reversible. By using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry, the most abundant serum proteins contributing to the formation of a hard corona on the QDs are identified.
Pseudomonas aeruginosa rapidly adapts to altered conditions by quorum sensing (QS), a communication system that it uses to collectively modify its behavior through the production, release, and detection of signaling molecules. QS molecules can also be sensed by hosts, although the respective receptors and signaling pathways are poorly understood. We describe a pattern of regulation in the host by the aryl hydrocarbon receptor (AhR) that is critically dependent on qualitative and quantitative sensing of P. aeruginosa quorum. QS molecules bind to AhR and distinctly modulate its activity. This is mirrored upon infection with P. aeruginosa collected from diverse growth stages and with QS mutants. We propose that by spying on bacterial quorum, AhR acts as a major sensor of infection dynamics, capable of orchestrating host defense according to the status quo of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.