Neutrophil migration into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarised migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial cell migration; TEM) in a luminal to abluminal direction. Using real-time confocal imaging we report that neutrophils can exhibit disrupted polarised TEM (“hesitant” and “reverse”) in vivo. These events were noted in inflammation following ischemia-reperfusion injury, characterised by reduced expression of junctional adhesion molecule C (JAM-C) from EC junctions, and were enhanced by EC JAM-C blockade or genetic deletion. The results identify JAM-C as a key regulator of polarised neutrophil TEM in vivo and suggest that reverse TEM neutrophils can contribute to dissemination of systemic inflammation.
Adhesion of parasitized erythrocytes to post-capillary venular endothelium or uninfected red cells is strongly implicated in the pathogenesis of severe Plasmodium falciparum malaria. Neoantigens at the infected red-cell surface adhere to a variety of host receptors, demonstrate serological diversity in field isolates and may also be a target of the host-protective immune response. Here we use sequential cloning of P. falciparum by micromanipulation to investigate the ability of a parasite to switch antigenic and cytoadherence phenotypes. Our data show that antigens at the parasitized cell surface undergo clonal variation in vitro in the absence of immune pressure at the rate of 2% per generation with concomitant modulations of the adhesive phenotype. A clone has the potential to switch at high frequency to a variety of antigenic and adhesive phenotypes, including a new type of cytoadherence behaviour, 'auto-agglutination' of infected erythrocytes. This rapid appearance of antigenic and functional heterogeneity has important implications for pathogenesis and acquired immunity.
Recent studies have demonstrated that neutrophils are not a homogenous population of cells. Here, we have identified a subset of human neutrophils with a distinct profile of cell-surface receptors [CD54(high), CXC chemokine receptor 1(low) (CXCR1(low))], which represent cells that have migrated through an endothelial monolayer and then re-emerged by reverse transmigration (RT). RT neutrophils, when in contact with endothelium, were rescued from apoptosis, demonstrate functional priming, and were rheologically distinct from neutrophils that had not undergone transendothelial migration. In vivo, 1-2% of peripheral blood neutrophils in patients with systemic inflammation exhibit a RT phenotype. A smaller population existed in healthy donors ( approximately 0.25%). RT neutrophils were distinct from naïve circulatory neutrophils (CD54(low), CXCR1(high)) and naïve cells after activation with formyl-Met-Leu-Phe (CD54(low), CXCR1(low)). It is important that the RT phenotype (CD54(high), CXCR1(low)) is also distinct from tissue-resident neutrophils (CD54(low), CXCR1(low)). Our results demonstrate that neutrophils can migrate in a retrograde direction across endothelial cells and suggest that a population of tissue-experienced neutrophils with a distinct phenotype and function are present in the peripheral circulation in humans in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.