Severe acute respiratory syndrome (SARS) is an acute infectious disease that spreads mainly via the respiratory route. A distinct coronavirus (SARS-CoV) has been identified as the aetiological agent of SARS. Recently, a metallopeptidase named angiotensin-converting enzyme 2 (ACE2) has been identified as the functional receptor for SARS-CoV. Although ACE2 mRNA is known to be present in virtually all organs, its protein expression is largely unknown. Since identifying the possible route of infection has major implications for understanding the pathogenesis and future treatment strategies for SARS, the present study investigated the localization of ACE2 protein in various human organs (oral and nasal mucosa, nasopharynx, lung, stomach, small intestine, colon, skin, lymph nodes, thymus, bone marrow, spleen, liver, kidney, and brain). The most remarkable finding was the surface expression of ACE2 protein on lung alveolar epithelial cells and enterocytes of the small intestine. Furthermore, ACE2 was present in arterial and venous endothelial cells and arterial smooth muscle cells in all organs studied. In conclusion, ACE2 is abundantly present in humans in the epithelia of the lung and small intestine, which might provide possible routes of entry for the SARS-CoV. This epithelial expression, together with the presence of ACE2 in vascular endothelium, also provides a first step in understanding the pathogenesis of the main SARS disease manifestations.
The renin-angiotensin-aldosterone system (RAAS) is a key regulator of systemic blood pressure and renal function and a key player in renal and cardiovascular disease. However, its (patho)physiological roles and its architecture are more complex than initially anticipated. Novel RAAS components that may add to our understanding have been discovered in recent years. In particular, the human homologue of ACE (ACE2) has added a higher level of complexity to the RAAS. In a short period of time, ACE2 has been cloned, purified, knocked-out, knocked-in; inhibitors have been developed; its 3D structure determined; and new functions have been identified. ACE2 is now implicated in cardiovascular and renal (patho)physiology, diabetes, pregnancy, lung disease and, remarkably, ACE2 serves as a receptor for SARS and NL63 coronaviruses. This review covers available information on the genetic, structural and functional properties of ACE2. Its role in a variety of (patho)physiological conditions and therapeutic options of modulation are discussed.
). Sodium intake affects urinary albumin excretion especially in overweight subjects. J Intern Med 2004; 256: 324-330.Objectives. To examine the relationship between sodium intake and urinary albumin excretion, being an established risk marker for later cardiovascular morbidity and mortality. Design. Cross-sectional cohort study using linear regression analysis. Setting. University hospital outpatient clinic. Subjects. A cohort drawn from the general population, consisting of 7850 subjects 28-75 years of age, all inhabitants of the city of Groningen, the Netherlands. The cohort is enriched for the presence of subjects with elevated urinary albumin concentration.Results. The results show a positive relationship between dietary sodium intake and urinary albumin excretion. The association was independent of other cardiovascular risk factors (such as sex, age, blood pressure, body mass index (BMI), waist-to-hip ratio, serum cholesterol, plasma glucose and smoking) and other food constituents (calcium, potassium and protein). The relationship between sodium intake and urinary albumin excretion was steeper in subjects with a higher BMI compared with a lower BMI. Conclusions. Sodium intake is positively related to urinary albumin excretion. This relation is more pronounced in subjects with a higher BMI. These results suggest that high sodium intake may unfavourably influences cardiovascular prognosis especially in overweight and obese subjects.
Abstract. Huzen J, Wong LSM, van Veldhuisen DJ, Samani NJ, Zwinderman AH, Codd V, Cawthon RM, Benus GFJD, van der Horst ICC, Navis G, Bakker SJL, Gansevoort RT, de Jong PE, Hillege HL, van Gilst WH, de Boer RA, van der Harst P (University of Groningen, Groningen, the Netherlands; University of Leicester, Leicester, UK; Academic Medical Center, Amsterdam, the Netherlands; University of Utah, Salt Lake City, UT, USA; University of Groningen, Groningen, the Netherlands; and ICIN-Netherlands Heart Institute, Utrecht, the Netherlands). Telomere length loss due to smoking and metabolic traits. J Intern Med 2014; 275: 155-163.Objectives. Human age-dependent telomere attrition and telomere shortening are associated with several age-associated diseases and poorer overall survival. The aim of this study was to determine longitudinal leucocyte telomere length dynamics and identify factors associated with temporal changes in telomere length.Design and Methods. Leucocyte telomere length was measured by quantitative polymerase chain reaction in 8074 participants from the Prevention of Renal and Vascular End-stage Disease (PREVEND) study, an ongoing community-based prospective cohort study initiated in 1997. Follow-up data were available at two time-points up to 2007. Leucocyte telomere length was measured, on between one and three separate occasions, in a total of 16 783 DNA samples. Multilevel growth models were created to identify the factors that influence leucocyte telomere dynamics.Results. We observed an average attrition rate of 0.47 AE 0.16 relative telomere length units (RTLUs) per year in the study population aged 48 (range 39-60) years at baseline. Annual telomere attrition rate increased with age (P < 0.001) and was faster on average in men than in women (P for interaction 0.043). The major independent factors determining telomere attrition rate were active smoking (approximately tripled the loss of RTLU per year, P < 0.0001) and multiple traits of the metabolic syndrome (waist-hip ratio, P = 0.007; blood glucose level, P = 0.045, and HDL cholesterol level, P < 0.001).Conclusions. Smoking and variables linked to the metabolic syndrome are modifiable lifestyle factors that accelerate telomere attrition in humans. The higher rate of cellular ageing may mediate the link between smoking and the metabolic syndrome to an increased risk of several age-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.