The future of coastal wetlands and their ecological value depend on their capacity to adapt to the interacting effects of human impacts and sea-level rise. Even though extensive wetland loss due to submergence is a possible scenario, its magnitude is highly uncertain due to limited understanding of hydrodynamic and bio-geomorphic interactions over time. In particular, the effect of man-made drainage modifications on hydrodynamic attenuation and consequent wetland evolution is poorly understood. Predictions are further complicated by the presence of a number of vegetation types that change over time and also contribute to flow attenuation. Here, we show that flow attenuation affects wetland vegetation by modifying its wetting-drying regime and inundation depth, increasing its vulnerability to sea-level rise. Our simulations for an Australian subtropical wetland predict much faster wetland loss than commonly used models that do not consider flow attenuation.
Coastal wetlands are vulnerable to submergence due to sea-level rise, as shown by predictions of up to 80% of global wetland loss by the end of the century. Coastal wetlands with mixed mangrove-saltmarsh vegetation are particularly vulnerable because sea-level rise can promote mangrove encroachment on saltmarsh, reducing overall wetland biodiversity. Here we use an ecogeomorphic framework that incorporates hydrodynamic effects, mangrove-saltmarsh dynamics, and soil accretion processes to assess the effects of control structures on wetland evolution. Migration and accretion patterns of mangrove and saltmarsh are heavily dependent on topography and control structures. We find that current management practices that incorporate a fixed gate for the control of mangrove encroachment are useful initially, but soon become ineffective due to sea-level rise. Raising the gate, to counteract the effects of sea level rise and promote suitable hydrodynamic conditions, excludes mangrove and maintains saltmarsh over the entire simulation period of 100 years
Dryland wetlands are resilient ecosystems that can adapt to extreme periodic drought-flood episodes. climate change projections show increased drought severity in drylands that could compromise wetland resilience and reduce important habitat services. These recognized risks have been difficult to evaluate due to our limited capacity to establish comprehensive relationships between flood-drought episodes and vegetation responses at the relevant spatiotemporal scales. We address this issue by integrating detailed spatiotemporal flood-drought simulations with remotely sensed vegetation responses to water regimes in a dryland wetland known for its highly variable inundation. We show that a combination of drought tolerance and dormancy strategies allow wetland vegetation to recover after droughts and recolonize areas invaded by terrestrial species. However, climate change scenarios show widespread degradation during drought and limited recovery after floods. Importantly, the combination of degradation extent and increase in drought duration is critical for the habitat services wetland systems provide for waterbirds and fish. Dryland biomes comprise almost 50% of Earth's land surface and substantially contribute to global biodiversity and carbon sequestration 1. In these environments, dryland wetlands are of key importance for regional biodiversity as they serve as habitat sanctuaries for aquatic and terrestrial biota in areas with very few resources 2,3. Periodical flooding events regulate the ecological diversity of the system 4 as flows deliver water, sediment, and associated nutrients to the floodplain 5 , allow fish and invertebrates to reach floodplain environments or distant waterholes 6 , and trigger breeding of waterbirds 3,7 and fish 8. During droughts, wetlands show resilience to limited water availability due to plant species either being drought-tolerant or able to re-establish when wet conditions return 9. Future global climate change patterns and interdecadal variability projections indicate that droughts will be longer in dryland areas because of potential changes in weather patterns 10 , which could lead to global decreases of wetland extent, vegetation deterioration, and decreases in habitat services. Although these are recognized risks of pronounced interdecadal variability and climate change, estimates of vegetation deterioration in dryland wetlands are still uncertain, often due to oversimplified representation of flood-drought episodes and the vegetation response to these events. Drylands around the world are expected to receive less rainfall over the next century, which will critically increase the pressure on dryland wetlands, as they will compete for water with irrigation and human and livestock consumption 10,11. Climate variability will add to this pressure, with anomalies in weather patterns such as El Niño Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO) expected to become stronger in the future 12,13 , extending droughts 10 and reducing vegetation productivity 14....
Dryland wetlands receiving periodical floods are of key importance for ecological resilience. The inundation regime (i.e., frequency, duration, depth, and timing of inundation), is one of the major factors that determine the suitability of local conditions for specific wetland species. During droughts, inundation conditions can reach a threshold after which wetland vegetation could transition to dryland vegetation. This study analyses the response of vegetation to hydrologic variability in an arid wetland in Australia over a period of 22 years (including the Millennium drought) in order to identify inundation thresholds for transitions. We use numerical modelling, field observations and remote sensing data to relate continuous detailed simulations of the inundation regime with the response of patches of Common reed, Water couch and River red gum, three key vegetation associations in the study site. We focus in patches that were affected by the drought and presented dryland vegetation invasion as well as reference patches that remained healthy throughout the drought. On each patch, we compare annual and inter-annual simulated inundation regimes to the minimum inundation conditions that can support the specific vegetation, and we compute the percentage area of the patch that verifies minimum inundation for each year. We define this area percentage as minimum inundation index. This index is analysed in conjunction with Landsat derived information on green vegetation coverage (green Seasonal Fractional Cover) for the selected patches. We found that the minimum inundation index and inter annual frequency are able to describe the vegetation dynamics of the patches, which can be characterised by two distinct response modes that depend on a threshold value of the minimum inundation index. Inundation below the threshold noticeably leads to degraded vegetation, but the vegetation can recover quickly if this threshold is later maintained for one or two years. Values below the threshold for more extended periods (drought) result in a gradual decrease of wetland vegetation to almost complete disappearance after four years and subsequent dryland vegetation invasion.
Abstract. The vulnerability of coastal wetlands to future sea-level rise (SLR) has been extensively studied in recent years, and models of coastal wetland evolution have been developed to assess and quantify the expected impacts. Coastal wetlands respond to SLR by vertical accretion and landward migration. Wetlands accrete due to their capacity to trap sediments and to incorporate dead leaves, branches, stems and roots into the soil, and they migrate driven by the preferred inundation conditions in terms of salinity and oxygen availability. Accretion and migration strongly interact, and they both depend on water flow and sediment distribution within the wetland, so wetlands under the same external flow and sediment forcing but with different configurations will respond differently to SLR. Analyses of wetland response to SLR that do not incorporate realistic consideration of flow and sediment distribution, like the bathtub approach, are likely to result in poor estimates of wetland resilience. Here, we investigate how accretion and migration processes affect wetland response to SLR using a computational framework that includes all relevant hydrodynamic and sediment transport mechanisms that affect vegetation and landscape dynamics, and it is efficient enough computationally to allow the simulation of long time periods. Our framework incorporates two vegetation species, mangrove and saltmarsh, and accounts for the effects of natural and manmade features like inner channels, embankments and flow constrictions due to culverts. We apply our model to simplified domains that represent four different settings found in coastal wetlands, including a case of a tidal flat free from obstructions or drainage features and three other cases incorporating an inner channel, an embankment with a culvert, and a combination of inner channel, embankment and culvert. We use conditions typical of south-eastern Australia in terms of vegetation, tidal range and sediment load, but we also analyse situations with 3 times the sediment load to assess the potential of biophysical feedbacks to produce increased accretion rates. We find that all wetland settings are unable to cope with SLR and disappear by the end of the century, even for the case of increased sediment load. Wetlands with good drainage that improves tidal flushing are more resilient than wetlands with obstacles that result in tidal attenuation and can delay wetland submergence by 20 years. Results from a bathtub model reveal systematic overprediction of wetland resilience to SLR: by the end of the century, half of the wetland survives with a typical sediment load, while the entire wetland survives with increased sediment load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.