Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non-crop habitats, and species' dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7-and 1.4-fold respectively. Arable-dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield-enhancing ecosystem services.
Agroforestry has been proposed as a sustainable agricultural system over conventional agriculture and forestry, conserving biodiversity and enhancing ecosystem service provision while not compromising productivity. However, the available evidence for the societal benefits of agroforestry is fragmented and does often not integrate diverse ecosystem services into the assessment. To upscale existing case-study insights to the European level, we conducted a meta-analysis on the effects of agroforestry on ecosystem service provision and on biodiversity levels. From 53 publications we extracted a total of 365 comparisons that were selected for the meta-analysis. Results revealed an overall positive effect of agroforestry (effect size=0.454, p<0.01) over conventional agriculture and forestry. However, results were heterogeneous, with differences among the types of agroforestry practices and ecosystem services assessed. Erosion control, biodiversity, and soil fertility are enhanced by agroforestry while there is no clear effect on provisioning services. The effect of agroforestry on biomass production is negative. Comparisons between agroforestry types and reference land-uses showed that both silvopastoral and silvoarable systems increase ecosystem service provision and biodiversity, especially when compared with forestry land. Mediterranean tree plantation systems should be especially targeted as soil erosion could be highly reduced while soil fertility increased. We conclude that agroforestry can enhance biodiversity and ecosystem service provision relative to conventional agriculture and forestry in Europe and could be a strategically beneficial land use in rural planning if its inherent complexity is considered in policy measures.
Mixed systems of agriculture incorporating combinations of trees and crops have formed key elements of the landscape of Europe throughout historical times, and many such systems continue to function in the present day. In many cases they represent formerly widespread traditional systems in decline and a number have already become extinct or exist only in a threatened state. The causes are both practical and economic. The agricultural subsidy regime within the European Union is presently unfavourable towards silvoarable practices, which has been a major factor in their recent decline. The silvoarable systems of Europe can be split into two classes according to location -northern Europe and the Mediterranean. The latter contains not only a greater area of silvoarable cultivation, but also a greater diversity of systems due to the broader range of commercial tree and crop species grown. In general, the systems of northern Europe are limited by light, whilst those of the Mediterranean are limited by the availability of water. Mixed systems of agriculture present an opportunity for future European rural development and have the potential to contribute towards the increased sustainability of agriculture and enhancement of biodiversity, whilst preserving landscapes that are both culturally important and aesthetically pleasing. A better understanding of the legacy of traditional silvoarable systems, combined with the formulation of a consistent definition and specific European policy towards them will be invaluable in ensuring that the benefits of mixed agriculture are fully exploited in the future.
Soil organisms provide crucial ecosystem services that support human life. However, little is known about their diversity, distribution, and the threats affecting them. Here, we compiled a global dataset of 60 sampled earthworm communities from over 7000 sites in 56 countries to predict patterns in earthworm diversity, abundance, and biomass. We identify the environmental drivers shaping these patterns. Local species richness and abundance typically peaked at higher latitudes, while biomass peaked in the tropics, patterns opposite to those observed in aboveground organisms. Similar to many aboveground taxa, climate variables were more important in shaping earthworm communities than soil properties or habitat 65 cover. These findings highlight that, while the environmental drivers are similar, conservation strategies to conserve aboveground biodiversity might not be appropriate for earthworm diversity, especially in a changing climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.