The ability of cells to readjust their volume after swelling, a phenomenon known as regulatory volume decrease (RVD), is a fundamental biological achievement guaranteeing survival and function of cells under osmotic stress. This article reviews the mechanisms of RVD in mammalian cells with special emphasis on the activation of ion channels during RVD.
Pendred syndrome is an autosomal recessive disorder characterized by sensorineural hearing loss, with malformations of the inner ear, ranging from enlarged vestibular aqueduct (EVA) to Mondini malformation, and deficient iodide organification in the thyroid gland. Nonsyndromic EVA (ns-EVA) is a separate type of sensorineural hearing loss showing normal thyroid function. Both Pendred syndrome and ns-EVA seem to be linked to the malfunction of pendrin (SLC26A4), a membrane transporter able to exchange anions between the cytosol and extracellular fluid. In the past, the pathogenicity of SLC26A4 missense mutations were assumed if the mutations fulfilled two criteria: low incidence of the mutation in the control population and substitution of evolutionary conserved amino acids. Here we show that these criteria are insufficient to make meaningful predictions about the effect of these SLC26A4 variants on the pendrin-induced ion transport. Furthermore, we functionally characterized 10 missense mutations within the SLC26A4 ORF, and consistently found that on the protein level, an addition or omission of a proline or a charged amino acid in the SLC26A4 sequence is detrimental to its function. These types of changes may be adequate for predicting SLC26A4 functionality in the absence of direct functional tests.ion transport physiology ͉ genotype-phenotype correlation P endred syndrome (PS) (OMIM#274600) (1) is an autosomal recessive disorder characterized by sensorineural hearing loss (SNHL) and malformations of the inner ear, ranging from enlarged vestibular aqueduct (EVA) (2) to Mondini malformation (3), combined with deficient iodide organification in the thyroid gland, as demonstrated by the positive perchlorate discharge test in affected individuals (4-7). Another form of SNHL associated with EVA, however, showing normal thyroid function, is called nonsyndromic EVA (ns-EVA) (OMIM#600791). The clinical features of PS are the consequence of impaired pendrin function (1), a protein encoded by the SLC26A4 gene (NM 000441). It is a member of the multifunctional anion transporter family SLC26, which mediates the exchange of anions including Cl Ϫ , HCO 3 Ϫ , OH Ϫ , I Ϫ , or formate (8). Pendrin seems to be responsible for the efflux of iodide in thyrocytes (9-11), and for mediating Cl Ϫ /HCO 3 Ϫ exchange in the kidney cortex (12) and inner ear. In the latter, pendrin is involved in the conditioning of endolymphatic fluid, presumably because of HCO 3 Ϫ secretion (13), thereby modifying inner ear acid-base homeostasis. A variable feature of PS is the development of goitre (apparent in only about 50% of the affected individuals). At the thyroid level, the role of pendrin is not conclusive. The transporter could act as an iodide transporter at the apical membrane of thyroid cells and impaired function could therefore lead to the iodide organification defect observed in PS patients (10,11,(14)(15)(16). PS seems to be linked to bi-allelic mutations of the SLC26A4 genes. ns-EVA is genetically more heterogeneous relative to PS, and a...
Cell volume alterations are involved in numerous cellular events like epithelial transport, metabolic processes, hormone secretion, cell migration, proliferation and apoptosis. Above all it is a need for every cell to counteract osmotic cell swelling in order to avoid cell damage. The defence against excess cell swelling is accomplished by a reduction of the intracellular osmolarity by release of organic- or inorganic osmolytes from the cell or by synthesis of osmotically less active macromolecules from their specific subunits. De-spite the large amount of experimental data that has accumulated, the intracellular mechanisms underlying the sensing of cell volume perturbations and the activation of volume compensatory processes, commonly summarized as regulatory volume decrease (RVD), are still only partly revealed. Moving into this field opens a complex scenario of molecular rearrangements and interactions involving intracellular messengers such as calcium, phosphoinositides and inositolphosphates as well as phosphoryla-tion/dephosphorylation processes and cytoskeletal reorganization with marked cell type- and tissue specific variations. Even in one and the same cell type significant differences regarding the activated pathways during RVD may be evident. This makes it virtually im-possible to unambigously define common sensing- and sinaling pathways used by differ-ent cells to readjust their celll volume, even if all these pathways converge to the activa-tion of comparatively few sets of effectors serving for osmolyte extrusion, including ion channels and transporters. This review is aimed at providing an insight into the manifold cellular mechanisms and alterations occuring during cell swelling and RVD.
Kidney collecting-duct cells swell in response to changes in medulla osmolality caused by the transition from antidiuresis to diuresis. Regulatory volume decrease (RVD) mechanisms must be activated to face this hypotonic stress. In Aquaporin-2 (AQP2)-expressing renal CD8 cells, hypotonicity decreased cell surface expression of AQP2 and increased the amount of AQP2 localized intracellularly, whereas the total amount of AQP2 phosphorylated at ser-256 decreased. Analysis of cAMP dynamics using fluorescence resonance energy transfer (FRET) showed that hypotonicity causes a reduction of cAMP, consistent with a decrease in phospho-AQP2. Moreover, hypotonicity caused a profound actin reorganization, associated with the loss of stress fibers and formation of F-actin patches (microspikes) at the cell border. Those changes were regulated by the monomeric GTPase Cdc42. Interestingly, expression of the dominant-negative Cdc42 (N17-Cdc42) prevented the hypotonicity-induced microspike formation and the generation of Cl(-) currents. Hypotonicity also caused the relocation from the cytosol to the plasma membrane and increase in interaction with actin of ICln (nucleotide-sensitive chloride current protein), which is essential for the generation of ion currents activated during RVD. Together, the profound actin remodeling, internalization of AQP2 and translocation of ICln to the plasma membrane during hypotonicity may contribute to RVD after cell swelling in renal medulla.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.