This is the first publication of an IUPAC‐sponsored Task Group on “Critically evaluated termination rate coefficients for free‐radical polymerization.” The paper summarizes the current situation with regard to the reliability of values of termination rate coefficients kt. It begins by illustrating the stark reality that there is large and unacceptable scatter in literature values of kt, and it is pointed out that some reasons for this are relatively easily remedied. However, the major reason for this situation is the inherent complexity of the phenomenon of termination in free‐radical polymerization. It is our impression that this complexity is only incompletely grasped by many workers in the field, and a consequence of this tendency to oversimplify is that misunderstanding of and disagreement about termination are rampant. Therefore this paper presents a full discussion of the intricacies of kt: sections deal with diffusion control, conversion dependence, chain‐length dependence, steady state and non‐steady state measurements, activation energies and activation volumes, combination and disproportionation, and theories. All the presented concepts are developed from first principles, and only rigorous, fully‐documented experimental results and theoretical investigations are cited as evidence. For this reason it can be said that this paper summarizes all that we, as a cross‐section of workers in the field, agree on about termination in free‐radical polymerization. Our discussion naturally leads to a series of recommendations regarding measurement of kt and reaching a more satisfactory understanding of this very important rate coefficient. Variation of termination rate coefficient kt with inverse absolute temperature T−1 for bulk polymerization of methyl methacrylate at ambient pressure.[6] The plot contains all tabulated values[6] (including those categorized as “recalculated”) except ones from polymerizations noted as involving solvent or above‐ambient pressures.magnified imageVariation of termination rate coefficient kt with inverse absolute temperature T−1 for bulk polymerization of methyl methacrylate at ambient pressure.[6] The plot contains all tabulated values[6] (including those categorized as “recalculated”) except ones from polymerizations noted as involving solvent or above‐ambient pressures.
Isothermal-isobaric molecular dynamics simulations are used to calculate the specific volume of models of different amorphous carbohydrates (glucose, sucrose, and trehalose) as a function of temperature. Plots of specific volume vs temperature exhibit a characteristic change in slope when the amorphous systems change from the glassy to the rubbery state. The intersection of the regression lines of data below (glassy state) and above (rubbery state) the change in slope provides the glass transition temperature (T(g)). These predicted glass transition temperatures are compared to experimental T(g) values as obtained from differential scanning calorimetry measurements. As expected, the predicted values are systematically higher than the experimental ones (about 12-34 K) as the cooling rates of the modeling methods are about a factor of 10(12) faster. Nevertheless, the calculated trend of T(g) values agrees exactly with the experimental trend: T(g)(glucose) < T(g)(sucrose) < T(g)(trehalose). Furthermore, the relative differences between the glass transition temperatures were also computed precisely, implying that atomistic molecular dynamics simulations can reproduce trends of T(g) values in amorphous carbohydrates with high quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.