Most human peripheral blood gamma delta T lymphocytes respond to hitherto unidentified mycobacterial antigens. Four ligands from Mycobacterium tuberculosis strain H37Rv that stimulated proliferation of a major human gamma delta T cell subset were isolated and partially characterized. One of these ligands, TUBag4, is a 5' triphosphorylated thymidine-containing compound, to which the three other stimulatory molecules are structurally related. These findings support the hypothesis that some gamma delta T cells recognize nonpeptidic ligands.
IL-12 is a key cytokine in directing the development of type 1 Th cells, which are critical to eradicate intracellular pathogens such as Mycobacterium tuberculosis. Here, we report that mannose-capped lipoarabinomannans (ManLAMs) from Mycobacterium bovis bacillus Calmette-Guérin and Mycobacterium tuberculosis inhibited, in a dose-dependant manner, the LPS-induced IL-12 production by human dendritic cells. The inhibitory activity was abolished by the loss of the mannose caps or the GPI acyl residues. Mannan, which is a ligand for the mannose receptor (MR) as well as an mAb specific for the MR, also inhibited the LPS-induced IL-12 production by dendritic cells. Our results indicate that ManLAMs may act as virulence factors that contribute to the persistence of M. bovis bacillus Calmette-Guérin and M. tuberculosis within phagocytic cells by suppressing IL-12 responses. Our data also suggest that engagement of the MR by ManLAMs delivers a negative signal that interferes with the LPS-induced positive signals delivered by the Toll-like receptors.
Mycobacterial lipids comprise a heterogeneous group of molecules capable of inducing T cell responses in humans. To identify novel antigenic lipids and increase our understanding of lipid-mediated immune responses, we established a panel of T cell clones with different lipid specificities. Using this approach we characterized a novel lipid antigen belonging to the group of diacylated sulfoglycolipids purified from Mycobacterium tuberculosis. The structure of this sulfoglycolipid was identified as 2-palmitoyl or 2-stearoyl-3-hydroxyphthioceranoyl-2′-sulfate-α-α′-d-trehalose (Ac2SGL). Its immunogenicity is dependent on the presence of the sulfate group and of the two fatty acids. Ac2SGL is mainly presented by CD1b molecules after internalization in a cellular compartment with low pH. Ac2SGL-specific T cells release interferon γ, efficiently recognize M. tuberculosis–infected cells, and kill intracellular bacteria. The presence of Ac2SGL-responsive T cells in vivo is strictly dependent on previous contact with M. tuberculosis, but independent from the development of clinically overt disease. These properties identify Ac2SGL as a promising candidate to be tested in novel vaccines against tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.