ObjectiveTo study baseline serum neurofilament light chain (sNfL) levels as a prognostic biomarker in Guillain-Barré syndrome (GBS).MethodsWe measured NfL in serum (98 samples) and cerebrospinal fluid (CSF) (24 samples) of patients with GBS prospectively included in the International GBS Outcome Study (IGOS) in Spain using single-molecule array (SiMoA) and compared them with 53 healthy controls (HCs). We performed multivariable regression to analyse the association between sNfL levels and functional outcome at 1 year.ResultsPatients with GBS had higher NfL levels than HC in serum (55.49 pg/mL vs 9.83 pg/mL, p<0.0001) and CSF (1308.5 pg/mL vs 440.24 pg/mL, p=0.034). Patients with preceding diarrhoea had higher sNfL than patients with respiratory symptoms or no preceding infection (134.90 pg/mL vs 47.86 pg/mL vs 38.02 pg/mL, p=0.016). sNfL levels correlated with Guillain-Barré Syndrome Disability Score and Inflammatory Rasch-built Overall Disability Scale (I-RODS) at every timepoint. Patients with pure motor variant and Miller Fisher syndrome showed higher sNfL levels than patients with sensorimotor GBS (162.18 pg/mL vs 95.50 pg/mL vs 38.02 pg/mL, p=0.025). Patients with acute motor axonal neuropathy cute motor axonal neuropathy had higher sNfL levels than other variants (190.55 pg/mL vs 46.79 pg/mL, p=0.013). sNfL returned to normal levels at 1 year. High baseline sNfL levels were associated with inability to run (OR=1.65, 95% CI 1.14 to 2.40, p=0.009) and lower I-RODS (β −2.60, 95% CI −4.66 to −0.54, p=0.014) at 1 year. Cut-off points predicting clinically relevant outcomes at 1 year with high specificity were calculated: inability to walk independently (>319 pg/mL), inability to run (>248 pg/mL) and ability to run (<34 pg/mL).ConclusionBaseline sNfL levels are increased in patients with GBS, are associated with disease severity and axonal variants and have an independent prognostic value in patients with GBS.
In the wake of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, an increasing number of patients with neurological disorders, including Guillain-Barré syndrome (GBS), have been reported following this infection. It remains unclear, however, if these cases are coincidental or not, as most publications were case reports or small regional retrospective cohort studies. The International GBS Outcome Study is an ongoing prospective observational cohort study enrolling patients with GBS within 2 weeks from onset of weakness. Data from patients included in this study, between 30 January 2020 and 30 May 2020, were used to investigate clinical and laboratory signs of a preceding or concurrent SARS-CoV-2 infection and to describe the associated clinical phenotype and disease course. Patients were classified according to the SARS-CoV-2 case definitions of the European Centre for Disease Prevention and Control and laboratory recommendations of the World Health Organization. Forty-nine patients with GBS were included, of whom eight (16%) had a confirmed and three (6%) a probable SARS-CoV-2 infection. Nine of these 11 patients had no serological evidence of other recent preceding infections associated with GBS, whereas two had serological evidence of a recent Campylobacter jejuni infection. Patients with a confirmed or probable SARS-CoV-2 infection frequently had a sensorimotor variant 8/11 (73%) and facial palsy 7/11 (64%). The eight patients who underwent electrophysiological examination all had a demyelinating subtype, which was more prevalent than the other patients included in the same time window [14/30 (47%), P = 0.012] as well as historical region and age-matched control subjects included in the International GBS Outcome Study before the pandemic [23/44 (52%), P = 0.016]. The median time from the onset of infection to neurological symptoms was 16 days (interquartile range 12–22). Patients with SARS-CoV-2 infection shared uniform neurological features, similar to those previously described in other post-viral GBS patients. The frequency (22%) of a preceding SARS-CoV-2 infection in our study population was higher than estimates of the contemporaneous background prevalence of SARS-CoV-2, which may be a result of recruitment bias during the pandemic, but could also indicate that GBS may rarely follow a recent SARS-CoV-2 infection. Consistent with previous studies, we found no increase in patient recruitment during the pandemic for our ongoing International GBS Outcome Study compared to previous years, making a strong relationship of GBS with SARS-CoV-2 unlikely. A case-control study is required to determine if there is a causative link or not.
Objective: To study baseline serum neurofilament light chain (sNfL) levels as a prognostic biomarker in Guillain-Barré syndrome (GBS). Methods: We measured NfL using SiMoA in serum (98 samples) and CSF (24 samples) of GBS patients prospectively included in the International GBS Outcome Study (IGOS) in Spain and compared them with controls (HC). We performed multivariable regression to analyze the association between sNfL levels and functional outcome at one year. Results: GBS patients had higher NfL levels than HC in serum (55.49pg/mL vs 9.13pg/mL, p<0,0001) and CSF (1308.5pg/mL vs 440.24pg/mL, p=0.034). Patients with preceding diarrhea had higher sNfL than patients with respiratory symptoms or no preceding infection (134.90pg/mL vs 47.86pg/mL vs 38.02pg/mL, p=0.016). sNfL levels correlated with GDS and R-ODS scales. Patients with pure motor variant and Miller-Fisher syndrome showed higher sNfL levels than patients with sensory-motor GBS (162.18pg/mL vs 95.50pg/mL vs 38.02pg/mL; p=0.025). AMAN patients had higher sNfL levels than other variants (190.55pg/mL vs 46.79pg/mL, p=0.013). sNfL returned to normal levels at one year. High baseline sNfL levels were associated with inability to run (OR=1.65, 95% CI 1.14-2.40, p=0.009) and lower R-ODS (β -2.60, 95% β -4.66-(-0.54), p=0.014) at one year. Cut-off points predicting clinically relevant outcomes at one year with high specificity were calculated: inability to walk independently (>319pg/mL), inability to run (>248pg/mL) and ability to run (<34pg/mL). Conclusion: Baseline sNfL levels are increased in patients with GBS, they are associated with disease severity and axonal variants and they have an independent prognostic value in GBS patients.
Background Guillain–Barré syndrome (GBS) is an acute inflammatory neuropathy with a heterogeneous presentation. Although some evidences support the role of autoantibodies in its pathogenesis, the target antigens remain unknown in a substantial proportion of GBS patients. The objective of this study is to screen for autoantibodies targeting peripheral nerve components in Guillain–Barré syndrome. Methods Autoantibody screening was performed in serum samples from all GBS patients included in the International GBS Outcome study by 11 different Spanish centres. The screening included testing for anti-ganglioside antibodies, anti-nodo/paranodal antibodies, immunocytochemistry on neuroblastoma-derived human motor neurons and murine dorsal root ganglia (DRG) neurons, and immunohistochemistry on monkey peripheral nerve sections. We analysed the staining patterns of patients and controls. The prognostic value of anti-ganglioside antibodies was also analysed. Results None of the GBS patients (n = 100) reacted against the nodo/paranodal proteins tested, and 61 (61%) were positive for, at least, one anti-ganglioside antibody. GBS sera reacted strongly against DRG neurons more frequently than controls both with IgG (6% vs 0%; p = 0.03) and IgM (11% vs 2.2%; p = 0.02) immunodetection. No differences were observed in the proportion of patients reacting against neuroblastoma-derived human motor neurons. Reactivity against monkey nerve tissue was frequently detected both in patients and controls, but specific patterns were only detected in GBS patients: IgG from 13 (13%) patients reacted strongly against Schwann cells. Finally, we confirmed that IgG anti-GM1 antibodies are associated with poorer outcomes independently of other known prognostic factors. Conclusion Our study confirms that (1) GBS patients display a heterogeneous repertoire of autoantibodies targeting nerve cells and structures; (2) gangliosides are the most frequent antigens in GBS patients and have a prognostic value; (3) further antigen-discovery experiments may elucidate other potential antigens in GBS.
Key Clinical MessageAlthough involuntary movements of stumps are less frequent than phantom sensation or other neurological sequelae of limb amputation, they represent a phenomenon that has been known for many years. The pathophysiology remains unknown, but it seems to be related to damage to the peripheral nervous system. Treatment is not standardized, but antimyoclonic drugs seem to be useful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.