Based on recent molecular and morphological studies we present a modern worldwide phylogenetic classification of the AE 12074 grasses and place the 771 grass genera into 12 subfamilies (Anomochlooideae, Aristidoideae, Arundinoideae, Bambusoideae, Chloridoideae, Danthonioideae, Micraioideae, Oryzoideae, Panicoideae, Pharoideae, Puelioideae, and Pooideae), 6 supertribes (Andropogonodae, Arundinarodae, Bambusodae, Panicodae, Poodae, Triticodae), 51 tribes (Ampelodesmeae, Andropogoneae, Anomochloeae, Aristideae, Arundinarieae, Arundineae, Arundinelleae, Atractocarpeae, Bambuseae, Brachyelytreae, Brachypodieae, Bromeae, Brylkinieae, Centotheceae, Centropodieae, Chasmanthieae, Cynodonteae, Cyperochloeae, Danthonieae, Diarrheneae, Ehrharteae, Eragrostideae, Eriachneae, Guaduellieae, Gynerieae, Hubbardieae, Isachneae, Littledaleeae, Lygeeae, Meliceae, Micraireae, Molinieae, Nardeae, Olyreae, Oryzeae, Paniceae, Paspaleae, Phaenospermateae, Phareae, Phyllorachideae, Poeae, Steyermarkochloeae, Stipeae, Streptochaeteae, Streptogyneae, Thysanolaeneae, Triraphideae, Tristachyideae, Triticeae, Zeugiteae, and Zoysieae), and 80 subtribes (Aeluropodinae, Agrostidinae, Airinae, Ammochloinae, Andropogoninae, Anthephorinae, Anthistiriinae, Anthoxanthinae, Arthraxoninae, Arthropogoninae, Arthrostylidiinae, Arundinariinae, Aveninae, Bambusinae, Boivinellinae, Boutelouinae, Brizinae, Buergersiochloinae, Calothecinae, Cenchrinae, Chionachninae, Chusqueinae, Coicinae, Coleanthinae, Cotteinae, Cteniinae, Cynosurinae, Dactylidinae, Dichantheliinae, Dimeriinae, Duthieinae, Eleusininae, Eragrostidinae, Farragininae, Germainiinae, Gouiniinae, Guaduinae, Gymnopogoninae, Hickeliinae, Hilariinae, Holcinae, Hordeinae, Ischaeminae, Loliinae, Melinidinae, Melocanninae, Miliinae, Monanthochloinae, Muhlenbergiinae, Neurachninae, Olyrinae, Orcuttiinae, Oryzinae, Otachyriinae, Panicinae, Pappophorinae, Parapholiinae, Parianinae, Paspalinae, Perotidinae, Phalaridinae, Poinae, Racemobambosinae, Rottboelliinae, Saccharinae, Scleropogoninae, Scolochloinae, Sesleriinae, Sorghinae, Sporobolinae, Torreyochloinae, Traginae, Trichoneurinae, Triodiinae, Tripogoninae, Tripsacinae, Triticinae, Unioliinae, Zizaniinae, and Zoysiinae). In addition, we include a radial tree illustrating the hierarchical relationships among the subtribes, tribes, and subfamilies. We use the subfamilial name, Oryzoideae, over Ehrhartoideae because the latter was initially published as a misplaced rank, and we circumscribe Molinieae to include 13 Arundinoideae genera. The subtribe Calothecinae is newly described and the tribe Littledaleeae is new at that rank.
We present a new worldwide phylogenetic classification of 11 506 grass species in 768 genera, 12 subfamilies, seven supertribes, 52 tribes, five supersubtribes, and 90 subtribes; and compare two phylogenetic classifications of the grass family published in 2015 (Soreng et al. and Kellogg). The subfamilies (in descending order based on the number of species) are Pooideae with 3968 species in 202 genera, 15 tribes, and 30 subtribes; Panicoideae with 3241 species in 247 genera, 13 tribes, and 19 subtribes; Bambusoideae with 1670 species in 125 genera, three tribes, and 15 subtribes; Chloridoideae with 1602 species in 124 genera, five tribes, and 26 subtribes; Aristidoideae with 367 species in three genera, and one tribe; Danthonioideae with 292 species in 19 genera, and one tribe; Micrairoideae with 184 species in eight genera, and three tribes; Oryzoideae with 115 species in 19 genera, four tribes, and two subtribes; Arundinoideae with 40 species in 14 genera, two tribes, and two subtribes; Pharoideae with 12 species in three genera, and one tribe; Puelioideae with 11 species in two genera, and two tribes; and the Anomochlooideae with four species in two genera, and two tribes. We also include a radial tree illustrating the hierarchical relationships among the subtribes, tribes, and subfamilies. Newly described taxa include: supertribes Melicodae and Nardodae; supersubtribes Agrostidodinae, Boutelouodinae, Gouiniodinae, Loliodinae, and Poodinae; and subtribes Echinopogoninae and Ventenatinae.
Despite the importance of species discovery, the processes including collecting, recognizing, and describing new species are poorly understood. Data are presented for flowering plants, measuring quantitatively the lag between the date a specimen of a new species was collected for the first time and when it was subsequently described and published. The data from our sample of new species published between 1970 and 2010 show that only 16% were described within five years of being collected for the first time. The description of the remaining 84% involved much older specimens, with nearly one-quarter of new species descriptions involving specimens >50 y old. Extrapolation of these results suggest that, of the estimated 70,000 species still to be described, more than half already have been collected and are stored in herbaria. Effort, funding, and research focus should, therefore, be directed as much to examining extant herbarium material as collecting new material in the field.herbarium specimen | monograph | taxonomy A ccurate species recognition underpins our knowledge of global biodiversity (1-3). In recent years, the lack of taxono mic activity has led to increased political (4) and scientific calls (3) to invest in the science of taxonomy, which is fundamental for what we know about species-level diversity. The assumptions behind these demands are that increased resources would necessarily lead to increased taxonomic productivity and accuracy. Given finite resources, it is essential that scientifically sound criteria regarding where funds should most usefully be targeted are used to determine priorities for taxonomic research. It is therefore surprising that the processes of collecting, recognizing, and describing species are poorly understood and only rarely discussed (5-7) and that there is little research focused on the processes that result in the recognition of new species. Many groups of organisms are so poorly known that measuring any aspect of the discovery process suffers from lack of data. In terms of completing the species-level "inventory of life," the flowering plants are viewed as an attainable priority research target because they are already relatively well known and the final inventory is estimated to be only 10-20% from completion (8). Furthermore, plants are pivotal organisms for monitoring and measuring global biodiversity because they comprise a species-rich component of almost all habitats on earth (9). An enhanced scientific understanding of the discovery process for flowering plants could help define specific priorities for funding agencies and facilitate the meeting of global biodiversity targets. Here, we focus on the temporal dynamics of the lag between the collection of flowering plant specimens and their subsequent recognition and description as new species (7). For a representative dataset, the discovery time (I) between the date of the earliest specimen collected (C) and date the description was published (D) was calculated for each species (Fig. 1). ResultsDiscovery I ranged fro...
The cataloging of the vascular plants of the Americas has a centuries-long history, but it is only in recent decades that an overview of the entire flora has become possible. We present an integrated assessment of all known native species of vascular plants in the Americas. Twelve regional and national checklists, prepared over the past 25 years and including two large ongoing flora projects, were merged into a single list. Our publicly searchable checklist includes 124,993 species, 6227 genera, and 355 families, which correspond to 33% of the 383,671 vascular plant species known worldwide. In the past 25 years, the rate at which new species descriptions are added has averaged 744 annually for the Americas, and we can expect the total to reach about 150,000.
We present an updated worldwide phylogenetic classification of Poaceae with 11 783 species in 12 subfamilies, 7 supertribes, 54 tribes, 5 super subtribes, 109 subtribes, and 789 accepted genera. The subfamilies (in descending order based on the number of species) are Pooideae with 4126 species in 219 genera, 15 tribes, and 34 subtribes; Panicoideae with 3325 species in 242 genera, 14 tribes, and 24 subtribes; Bambusoideae with 1698 species in 136 genera, 3 tribes, and 19 subtribes; Chloridoideae with 1603 species in 121 genera, 5 tribes, and 30 subtribes; Aristidoideae with 367 species in three genera and one tribe; Danthonioideae with 292 species in 19 genera and 1 tribe; Micrairoideae with 192 species in nine genera and three tribes; Oryzoideae with 117 species in 19 genera, 4 tribes, and 2 subtribes; Arundinoideae with 36 species in 14 genera and 3 tribes; Pharoideae with 12 species in three genera and one tribe; Puelioideae with 11 species in two genera and two tribes; and the Anomochlooideae with four species in two genera and two tribes. Two new tribes and 22 new or resurrected subtribes are recognized. Forty‐five new (28) and resurrected (17) genera are accepted, and 24 previously accepted genera are placed in synonymy. We also provide an updated list of all accepted genera including common synonyms, genus authors, number of species in each accepted genus, and subfamily affiliation. We propose Locajonoa, a new name and rank with a new combination, L. coerulescens. The following seven new combinations are made in Lorenzochloa: L. bomanii, L. henrardiana, L. mucronata, L. obtusa, L. orurensis, L. rigidiseta, and L. venusta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.