Pulmonary hypertension (PH) is frequent in left heart disease (LHD), as a consequence of the underlying condition. Significant advances have occurred over the past 5 years since the 5th World Symposium on Pulmonary Hypertension in 2013, leading to a better understanding of PH-LHD, challenges and gaps in evidence. PH in heart failure with preserved ejection fraction represents the most complex situation, as it may be misdiagnosed with group 1 PH. Based on the latest evidence, we propose a new haemodynamic definition for PH due to LHD and a three-step pragmatic approach to differential diagnosis. This includes the identification of a specific “left heart” phenotype and a non-invasive probability of PH-LHD. Invasive confirmation of PH-LHD is based on the accurate measurement of pulmonary arterial wedge pressure and, in patients with high probability, provocative testing to clarify the diagnosis. Finally, recent clinical trials did not demonstrate a benefit in treating PH due to LHD with pulmonary arterial hypertension-approved therapies.
Pulmonary arterial hypertension (PAH) is a rare disorder with a poor prognosis. Deleterious variation within components of the transforming growth factor-β pathway, particularly the bone morphogenetic protein type 2 receptor (BMPR2), underlies most heritable forms of PAH. To identify the missing heritability we perform whole-genome sequencing in 1038 PAH index cases and 6385 PAH-negative control subjects. Case-control analyses reveal significant overrepresentation of rare variants in ATP13A3, AQP1 and SOX17, and provide independent validation of a critical role for GDF2 in PAH. We demonstrate familial segregation of mutations in SOX17 and AQP1 with PAH. Mutations in GDF2, encoding a BMPR2 ligand, lead to reduced secretion from transfected cells. In addition, we identify pathogenic mutations in the majority of previously reported PAH genes, and provide evidence for further putative genes. Taken together these findings contribute new insights into the molecular basis of PAH and indicate unexplored pathways for therapeutic intervention.
C hronic thromboembolic pulmonary hypertension (CTEPH) is a complication of acute pulmonary emboli with uncertain prevalence, ranging from 0.57% to 9.1%. 1The diagnosis is strongly associated with a history of acute venous thromboembolism.2 CTEPH results from incomplete Editorial, see p 1731 Clinical Perspective on p 1771resolution of pulmonary emboli that become organized into vessel walls and cause different degrees of obstruction to Background-Chronic thromboembolic pulmonary hypertension results from incomplete resolution of pulmonary emboli.Pulmonary endarterectomy (PEA) is potentially curative, but residual pulmonary hypertension following surgery is common and its impact on long-term outcome is poorly understood. We wanted to identify factors correlated with poor long-term outcome after surgery and specifically define clinically relevant residual pulmonary hypertension post-PEA. Methods and Results-Eight hundred eighty consecutive patients (mean age, 57 years) underwent PEA for chronic thromboembolic pulmonary hypertension. Patients routinely underwent detailed reassessment with right heart catheterization and noninvasive testing at 3 to 6 months and annually thereafter with discharge if they were clinically stable at 3 to 5 years and did not require pulmonary vasodilator therapy. Cox regressions were used for survival (time-toevent) analyses. Overall survival was 86%, 84%, 79%, and 72% at 1, 3, 5, and 10 years for the whole cohort and 91% and 90% at 1 and 3 years for the recent half of the cohort. The majority of patient deaths after the perioperative period were not attributable to right ventricular failure (chronic thromboembolic pulmonary hypertension). At reassessment, a mean pulmonary artery pressure of ≥30 mm Hg correlated with the initiation of pulmonary vasodilator therapy post-PEA. A mean pulmonary artery pressure of ≥38 mm Hg and pulmonary vascular resistance ≥425 dynes·s -1 ·cm -5 at reassessment correlated with worse long-term survival. Conclusions-Our data confirm excellent long-term survival and maintenance of good functional status post-PEA.Hemodynamic assessment 3 to 6 months and 12 months post-PEA allows stratification of patients at higher risk of dying of chronic thromboembolic pulmonary hypertension and identifies a level of residual pulmonary hypertension that may guide the long-term management of patients postsurgery. 4 It is recognized that there is a steep surgical and institutional learning curve at the start of a PEA program, but, in experienced centers, the operative mortality rate is <5%.5-7 A number of reports have confirmed improved short-term outcome in terms of hemodynamics, right ventricular function, quality of life, functional status, and exercise capacity after surgery. [7][8][9][10][11][12][13][14][15][16][17][18] Fewer reports describe long-term outcome post-PEA, and those that have been published are mainly retrospective and either only had small numbers of patients [19][20][21][22][23][24][25][26] or limited information of factors correlated with long-term outco...
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial cell dysfunction and vascular remodeling. Normally, the endothelium forms an integral cellular barrier to regulate vascular homeostasis. During embryogenesis endothelial cells exhibit substantial plasticity that contribute to cardiac development by undergoing endothelial-to-mesenchymal transition (EndoMT). We determined the presence of EndoMT in the pulmonary vasculature in vivo and the functional effects on pulmonary artery endothelial cells (PAECs) undergoing EndoMT in vitro. Histologic assessment of patients with systemic sclerosis-associated PAH and the hypoxia/SU5416 mouse model identified the presence von Willebrand factor/α-smooth muscle actin-positive endothelial cells in up to 5% of pulmonary vessels. Induced EndoMT in PAECs by inflammatory cytokines IL-1β, tumor necrosis factor α, and transforming growth factor β led to actin cytoskeleton reorganization and the development of a mesenchymal morphology. Induced EndoMT cells exhibited up-regulation of mesenchymal markers, including collagen type I and α-smooth muscle actin, and a reduction in endothelial cell and junctional proteins, including von Willebrand factor, CD31, occludin, and vascular endothelial-cadherin. Induced EndoMT monolayers failed to form viable biological barriers and induced enhanced leak in co-culture with PAECs. Induced EndoMT cells secreted significantly elevated proinflammatory cytokines, including IL-6, IL-8, and tumor necrosis factor α, and supported higher immune transendothelial migration compared with PAECs. These findings suggest that EndoMT may contribute to the development of PAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.