Plant-bacterial combinations can increase contaminant degradation in the rhizosphere, but the role played by indigenous root-associated bacteria during plant growth in contaminated soils is unclear. The purpose of this study was to determine if plants had the ability to selectively enhance the prevalence of endophytes containing pollutant catabolic genes in unrelated environments contaminated with different pollutants. At petroleum hydrocarbon contaminated sites, two genes encoding hydrocarbon degradation, alkane monooxygenase (alkB) and naphthalene dioxygenase (ndoB), were two and four times more prevalent in bacteria extracted from the root interior (endophytic) than from the bulk soil and sediment, respectively. In field sites contaminated with nitroaromatics, two genes encoding nitrotoluene degradation, 2-nitrotoluene reductase (ntdAa) and nitrotoluene monooxygenase (ntnM), were 7 to 14 times more prevalent in endophytic bacteria. The addition of petroleum to sediment doubled the prevalence of ndoB-positive endophytes in Scirpus pungens, indicating that the numbers of endophytes containing catabolic genotypes were dependent on the presence and concentration of contaminants. Similarly, the numbers of alkB-or ndoB-positive endophytes in Festuca arundinacea were correlated with the concentration of creosote in the soil but not with the numbers of alkB-or ndoB-positive bacteria in the bulk soil. Our results indicate that the enrichment of catabolic genotypes in the root interior is both plant and contaminant dependent.
Intact soil-core microcosms were used to compare persistence of Pseudomonas chlororaphis 3732RN-L11 in fallow soil and on wheat roots with field releases at diverse sites. Parallel field and microcosm releases at four sites in 1996 were repeated with addition of one site in 1997. Microcosms were obtained fresh and maintained at 60% soil water holding capacity in a growth chamber at 70% relative humidity, a 12-hour photoperiod, and constant temperature. Persistence of 3732RN-L11 was measured at each site in field plots and microcosms at 7-21 day intervals, and in duplicate microcosms sampled at an independent laboratory. Linear regression slopes of field plot and microcosm persistence were compared for each site, and between identical microcosms sampled at different sites, using log10 transformed plate counts. Microcosm persistence closely matched field plots for wheat roots, but persistence in fallow soil differed significantly in several instances where persistence in field plots was lower than in microcosms. Analysis of weather variations at each site indicated that rainfall events of 30-40 mm caused decreased persistence in fallow soil. Cooler temperatures enhanced persistence in field plots at later time points. Inter-laboratory comparison of regression slopes showed good agreement for data generated at different sites, though in two instances, longer sampling periods at one site caused significant differences between the sites. Soil characteristics were compared and it was found that fertility, namely the carbon to nitrogen ratio, and the presence of expanding clays, were related to persistence. These microcosm protocols produced reliable data at low cost, and were useable for pre-release risk analyses for microorganisms.
Intact soil-core microcosms were used to compare persistence of Pseudomonas chlororaphis 3732RN-L11 in fallow soil and on wheat roots with field releases at diverse sites. Parallel field and microcosm releases at four sites in 1996 were repeated with addition of one site in 1997. Microcosms were obtained fresh and maintained at 60% soil water holding capacity in a growth chamber at 70% relative humidity, a 12-hour photoperiod, and constant temperature. Persistence of 3732RN-L11 was measured at each site in field plots and microcosms at 7-21 day intervals, and in duplicate microcosms sampled at an independent laboratory. Linear regression slopes of field plot and microcosm persistence were compared for each site, and between identical microcosms sampled at different sites, using log10 transformed plate counts. Microcosm persistence closely matched field plots for wheat roots, but persistence in fallow soil differed significantly in several instances where persistence in field plots was lower than in microcosms. Analysis of weather variations at each site indicated that rainfall events of 30-40 mm caused decreased persistence in fallow soil. Cooler temperatures enhanced persistence in field plots at later time points. Inter-laboratory comparison of regression slopes showed good agreement for data generated at different sites, though in two instances, longer sampling periods at one site caused significant differences between the sites. Soil characteristics were compared and it was found that fertility, namely the carbon to nitrogen ratio, and the presence of expanding clays, were related to persistence. These microcosm protocols produced reliable data at low cost, and were useable for pre-release risk analyses for microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.