Endomorphins were subjected to a number of structural modifications in a search for their bioactive conformations. The alicyclic β-amino acids cis-(1S,2R)ACPC/ACHC, cis-(1R,2S)ACPC/ACHC, trans-(1S,2S)ACPC/ACHC, and trans-(1R,2R)ACPC/ACHC were introduced into endomorphins to examine the conformational effects on the bioactivity. Use of a combination of receptor binding techniques, 1 H NMR, and molecular modeling allowed the conclusion that Pro 2 substitution by these residues causes changes in structure, proteolytic stability, and pharmacological activity. It seems that the size of the alicyclic β-amino acids does not have marked influence on the receptor binding affinities and/or selectivities. Among the new analogues, the cis-(1S,2R)ACPC 2 and cis-(1S,2R)ACHC 2 -containing derivatives displayed the highest binding potencies and efficacies in receptor binding and ligand-stimulated [ 35 S]GTPγS functional experiments. Molecular dynamic simulations and 1 H NMR studies of the cis-ACPC/ACHC-containing analogues revealed that many conformations are accessible, though it is most likely that these peptides bind to the µ-opioid receptor in a compact, folded structure rather than extended.
Angiotensin IV, a metabolite of angiotensin II, inhibits the enzyme insulin regulated aminopeptidase or IRAP and also, although with lower potency, aminopeptidase-N (AP-N). When both beta (2)-homo amino acid- and beta (3)-homo amino acid substitutions were used, allowed the identification of H-( R)beta (2)hVal-Tyr-Ile-His-Pro-beta (3)hPhe-OH as a potent and stable Ang IV analog with high selectivity for IRAP versus AP-N and the AT1 receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.