Computer aided diagnosis (CAD) of biomedical images assists physicians for a fast facilitated tissue characterization. A scheme based on combining fuzzy logic (FL) and deep learning (DL) for automatic semantic segmentation (SS) of tumors in breast ultrasound (BUS) images is proposed. The proposed scheme consists of two steps: the first is a FL based preprocessing, and the second is a Convolutional neural network (CNN) based SS. Eight well-known CNN based SS models have been utilized in the study. Studying the scheme was by a dataset of 400 cancerous BUS images and their corresponding 400 ground truth images. SS process has been applied in two modes: batch and one by one image processing. Three quantitative performance evaluation metrics have been utilized: global accuracy (GA), mean Jaccard Index (mean intersection over union (IoU)), and mean BF (Boundary F1) Score. In the batch processing mode: quantitative metrics’ average results over the eight utilized CNNs based SS models over the 400 cancerous BUS images were: 95.45% GA instead of 86.08% without applying fuzzy preprocessing step, 78.70% mean IoU instead of 49.61%, and 68.08% mean BF score instead of 42.63%. Moreover, the resulted segmented images could show tumors’ regions more accurate than with only CNN based SS. While, in one by one image processing mode: there has been no enhancement neither qualitatively nor quantitatively. So, only when a batch processing is needed, utilizing the proposed scheme may be helpful in enhancing automatic ss of tumors in BUS images. Otherwise applying the proposed approach on a one-by-one image mode will disrupt segmentation’s efficiency. The proposed batch processing scheme may be generalized for an enhanced CNN based SS of a targeted region of interest (ROI) in any batch of digital images. A modified small dataset is available: https://www.kaggle.com/mohammedtgadallah/mt-small-dataset (S1 Data).
Automatic detection of maculopathy disease is a very important step to achieve high‐accuracy results for the early discovery of the disease to help ophthalmologists to treat patients. Manual detection of diabetic maculopathy needs much effort and time from ophthalmologists. Detection of exudates from retinal images is applied for the maculopathy disease diagnosis. The first proposed framework in this paper for retinal image classification begins with fuzzy preprocessing in order to improve the original image to enhance the contrast between the objects and the background. After that, image segmentation is performed through binarization of the image to extract both blood vessels and the optic disc and then remove them from the original image. A gradient process is performed on the retinal image after this removal process for discrimination between normal and abnormal cases. Histogram of the gradients is estimated, and consequently the cumulative histogram of gradients is obtained and compared with a threshold cumulative histogram at certain bins. To determine the threshold cumulative histogram, cumulative histograms of images with exudates and images without exudates are obtained and averaged for each type, and the threshold cumulative histogram is set as the average of both cumulative histograms. Certain histogram bins are selected and thresholded according to the estimated threshold cumulative histogram, and the results are used for retinal image classification. In the second framework in this paper, a Convolutional Neural Network (CNN) is utilized to classify normal and abnormal cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.