Early phase trials targeting the T-cell inhibitory molecule PD-L1 have shown clinical efficacy in cancer. This study was undertaken to determine whether PD-L1 is overexpressed in triple-negative breast cancer (TNBC) and to investigate the loss of the phosphatase and tensin homolog (PTEN) as a mechanism of PD-L1 regulation. The Cancer Genome Atlas (TCGA) RNA sequencing data showed significantly greater expression of the PD-L1 gene in TNBC (n=120) compared to non-TNBC (n=716) (P<0.001). Breast tumor tissue microarrays were evaluated for PD-L1 expression which was present in 19% (20 of 105) TNBC specimens. PD-L1+ tumors had greater CD8+ T-cell infiltrate than PD-L1− tumors (688 cells/mm versus 263 cells/mm; P<0.0001). To determine the effect of PTEN loss on PD-L1 expression, stable cell lines were generated using PTEN shRNA. PTEN knockdown led to significantly higher cell-surface PD-L1 expression and PD-L1 transcripts, suggesting transcriptional regulation. Moreover, PI3K pathway inhibition using the AKT inhibitor MK-2206 or rapamycin resulted in decreased PD-L1 expression, further linking PTEN and PI3K signaling to PD-L1 regulation. Co-culture experiments were performed to determine the functional effect of altered PD-L1 expression. Increased PD-L1 cell surface expression by tumor cells induced by PTEN loss led to decreased T cell proliferation and increased apoptosis. PD-L1 is expressed in 20% of TNBC, suggesting PD-L1 as a therapeutic target in TNBC. Since PTEN loss is one mechanism regulating PD-L1 expression, agents targeting the PI3K pathway may increase the antitumor adaptive immune responses.
Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors.
Background Phenotypic characterization of immune cells in the bone marrow (BM) of patients with acute myeloid leukemia (AML) is lacking. Methods T‐cell infiltration was quantified on BM biopsies from 13 patients with AML, and flow cytometry was performed on BM aspirates (BMAs) from 107 patients with AML who received treatment at The University of Texas MD Anderson Cancer Center. The authors evaluated the expression of inhibitory receptors (programmed cell death protein 1 [PD1], cytotoxic T‐lymphocyte antigen 4 [CTLA4], lymphocyte‐activation gene 3 [LAG3], T‐cell immunoglobulin and mucin‐domain containing‐3 [TIM3]) and stimulatory receptors (glucocorticoid‐induced tumor necrosis factor receptor‐related protein [GITR], OX40, 41BB [a type 2 transmembrane glycoprotein receptor], inducible T‐cell costimulatory [ICOS]) on T‐cell subsets and the expression of their ligands (41BBL, B7‐1, B7‐2, ICOSL, PD‐L1, PD‐L2, and OX40L) on AML blasts. Expression of these markers was correlated with patient age, karyotype, baseline next‐generation sequencing for 28 myeloid‐associated genes (including P53), and DNA methylation proteins (DNA methyltransferase 3α, isocitrate dehydrogenase 1[IDH1], IDH2, Tet methylcytosine dioxygenase 2 [TET2], and Fms‐related tyrosine kinase 3 [FLT3]). Results On histochemistry evaluation, the T‐cell population in BM appeared to be preserved in patients who had AML compared with healthy donors. The proportion of T‐regulatory cells (Tregs) in BMAs was higher in patients with AML than in healthy donors. PD1‐positive/OX40‐positive T cells were more frequent in AML BMAs, and a higher frequency of PD1‐positive/cluster of differentiation 8 (CD8)‐positive T cells coexpressed TIM3 or LAG3. PD1‐positive/CD8‐positive T cells were more frequent in BMAs from patients who had multiply relapsed AML than in BMAs from those who had first relapsed or newly diagnosed AML. Blasts in BMAs from patients who had TP53‐mutated AML were more frequently positive for PD‐L1. Conclusions The preserved T‐cell population, the increased frequency of regulatory T cells, and the expression of targetable immune receptors in AML BMAs suggest a role for T‐cell–harnessing therapies in AML.
Allogeneic stem-cell transplantation for patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) has been performed primarily with an HLA matched donor. Outcomes of haploidentical transplantation have recently improved, and a comparison between these donor sources in a uniform cohort of patients has not been performed. We evaluated outcomes of 227 patients with AML/MDS treated with melphalan-based conditioning. Donors were matched related (MRD) (N=87, 38%), matched unrelated (MUD) (N=108, 48%), or haploidentical (N=32, 14%). No significant differences were found between haploidentical and MUD transplant outcomes; however, there was a trend for improved outcomes in the MRD group with a 3-year progression-free survival for patients in remission of 57%, 45% and 41% for MRD, MUD and haploidentical, respectively (P=0.417). Recovery of T-cell subsets was similar for all groups. These results suggest that haploidentical donors can safely extend transplantation for AML/MDS patients without an HLA matched donor. Prospective studies comparing haploidentical and MUD transplants are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.