Ploidy could be the key to understanding megakaryocyte (MK) biology and platelet production. Human CD34 ؉ cells purified from umbilical cord blood (CB) and peripheral blood (PB) were investigated on their capability to give rise, in a serumfree medium containing thrombopoietin, to MKs and platelets. CB-MKs showed reduced polyploidization and platelet number compared with PB-MKs, but a similar membrane phenotype. Most CBMKs showed a 2N content of DNA (ϳ80%) and only 2.6% had 8N, whereas 40% of the PB cells had 8N or more. Platelets were substantially released in PB culture from day 12; at day 14 the CB-derived MKs were able to release platelets although at a reduced level (ϳ35%), correlating with their reduced size. A direct correlation was demonstrated by sorting polyploid cells from PB-MKs and evaluating the platelets released in the supernatant. Furthermore, the study analyzed the expression and distribution of cyclin D3 and cyclin B1. Cyclin D3 protein was increased in PB in comparison to CB-MKs; in PB culture most cells rapidly became positive, whereas in CB-derived cells cyclin D3 expression was evident only from day 9 and in a reduced percentage. Cyclin B1 was essentially localized at the nuclear level in the CB and was expressed during the whole culture. In PB-MKs, at day 9, a reduction was observed, correlating with an advanced ploidy state. The data indicate the inability of the CB-MKs to progress in the endomitotic process and a direct correlation between DNA content and platelet production. IntroductionThe main feature of megakaryocyte (MK) maturation is the development of a single, large, lobulated, polyploid nucleus; the mature MKs cease to proliferate but continue to increase their DNA content without undergoing late stages of mitosis. [1][2][3][4] Increase in megakaryocytic ploidy is associated with increase in megakaryocytic volume; the large size and abundant cytoplasm allow MKs to produce several thousand platelets per cell. 3 It was presumed that higher-ploidy cells could produce more platelets than lower-ploidy cells or that production and release is more efficient from a single large cell than from several smaller ones, but none of these suppositions has been proven. 5 Peripheral blood (PB)-mobilized CD34 ϩ cells induced to differentiate into megakaryocytic lineage gave rise to 3-fold augmentation of platelets compared with bone marrow (BM) CD34 ϩ cells, although the proportion of proplateletdisplaying MKs were similar. 6 Choi et al 7 reported the functionality of the platelets released in vitro from CD34 ϩ cells derived from PB stimulated to form MKs.The generation of large numbers of megakaryocytes became possible by the identification and cloning of thrombopoietin (TPO), the key regulatory cytokine of megakaryocytopoiesis. [8][9][10][11] Then several culture systems have been developed permitting all stages of megakaryocytopoiesis until platelet formation. 6,[12][13][14][15] TPO was shown to induce endomitosis and consequently to increase the polyploidy state of MKs in a significant meas...
BackgroundThe identification of signaling pathways that affect the cancer stem-like phenotype may provide insights into therapeutic targets for combating embryonal rhabdomyosarcoma. The aim of this study was to investigate the role of the MEK/ERK pathway in controlling the cancer stem-like phenotype using a model of rhabdospheres derived from the embryonal rhabdomyosarcoma cell line (RD).MethodsRhabdospheres enriched in cancer stem like cells were obtained growing RD cells in non adherent condition in stem cell medium. Stem cell markers were evaluated by FACS analysis and immunoblotting. ERK1/2, myogenic markers, proteins of DNA repair and bone marrow X-linked kinase (BMX) expression were evaluated by immunoblotting analysis. Radiation was delivered using an x-6 MV photon linear accelerator. Xenografts were obtained in NOD/SCID mice by subcutaneously injection of rhabdosphere cells or cells pretreated with U0126 in stem cell medium.ResultsMEK/ERK inhibitor U0126 dramatically prevented rhabdosphere formation and down-regulated stem cell markers CD133, CXCR4 and Nanog expression, but enhanced ALDH, MAPK phospho-active p38 and differentiative myogenic markers. By contrast, MAPK p38 inhibition accelerated rhabdosphere formation and enhanced phospho-active ERK1/2 and Nanog expression. RD cells, chronically treated with U0126 and then xeno-transplanted in NOD/SCID mice, delayed tumor development and reduced tumor mass when compared with tumor induced by rhabdosphere cells. U0126 intraperitoneal administration to mice bearing rhabdosphere-derived tumors inhibited tumor growth . The MEK/ERK pathway role in rhabdosphere radiosensitivity was investigated in vitro. Disassembly of rhabdospheres was induced by both radiation or U0126, and further enhanced by combined treatment. In U0126-treated rhabdospheres, the expression of the stem cell markers CD133 and CXCR4 decreased and dropped even more markedly following combined treatment. The expression of BMX, a negative regulator of apoptosis, also decreased following combined treatment, which suggests an increase in radiosensitivity of rhabdosphere cells.ConclusionsOur results indicate that the MEK/ERK pathway plays a prominent role in maintaining the stem-like phenotype of RD cells, their survival and their innate radioresistance.Thus, therapeutic strategies that target cancer stem cells, which are resistant to traditional cancer therapies, may benefit from MEK/ERK inhibition combined with traditional radiotherapy, thereby providing a promising therapy for embryonal rhabdomyosarcoma.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-016-0501-y) contains supplementary material, which is available to authorized users.
The alpha chemokine receptor CXCR4 has been shown to be expressed on human hematopoietic progenitor cells and during the megakaryocytic differentiation pathway. Stromal cell-derived factor 1 (SDF-1) is the ligand for CXCR4. In this study, the role of SDF-1␣ in megakaryocytopoiesis was investigated. CD34 ؉ progenitors purified from peripheral blood were grown in serum-free liquid suspension culture supplemented with thrombopoietin to obtain a virtually pure megakaryocytic progeny. In this condition, the addition of SDF-1␣ gives rise to megakaryocytes (
Cellular and molecular analysis of megakaryocytopoiesis has been hampered thus far by the lack of pure and abundant megakaryocyte (MK) cell populations. In this study, hematopoietic progenitor cells (HPCs), stringently purified from peripheral blood, were induced to megakaryocytic differentiation/maturation in serum-free liquid suspension culture treated with a growth factor cocktail (interleukin-3 [IL-3], c-kit ligand, and IL-6) and/or recombinant mpl ligand (mpIL). In particular, (1) the growth factor cocktail induced the growth of a 40% MK population, ie, 4 x 10(4) cells at day 0 generated 2 x 10(5) MK at terminal maturation; (2) further addition of mpIL increased the MK purity level to 80% with a final yield of 4 x 10(5) MKs; (3) treatment with mpIL alone resulted in a 97% to 99% MK population, with a mild increase of cell number (to 1.5 x 10(5) cells). In mpIL-supplemented culture, morphological evaluation indicated the presence of putative mononuclear MK precursors and then of mature polynucleated platelet- forming MKs, peaking at days 5 and 12, respectively. Membrane phenotype analysis showed a gradual decrease of CD34+ HPCs, coupled with an inverse increase of MK-specific antigens (eg, CD61/62/42b) starting before mature MK detection by morphology analysis. In situ hybridization showed the expression of MK-specific von Willebrand gene in both MK precursors and mature MKs. Furthermore, MKs synthesize and secrete low but significant amounts of both IL-6 and granulocyte- macrophage colony-stimulating factor. Comparative culture studies were performed on purified bone marrow CD34+/38hi or CD34+/38lo cells stimulated by mpIL alone. Both populations generated a highly enriched MK progeny (62% and 93% MKs at day 12 of culture, respectively) but showed either little or no proliferation. In conclusion, the purified peripheral blood HPC differentiation culture system allows for growth of a relatively large number of highly purified or “pure” megakaryocytic precursors and then mature MKs, thus providing an in vitro experimental tool to dissect the cellular and molecular basis of megakaryocytopoiesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.