Permanent congenital hypothyroidism (CH) is a common disease that occurs in 1 of 3,000-4,000 newborns. Except in rare cases due to hypothalamic or pituitary defects, CH is characterized by elevated levels of thyroid-stimulating hormone (TSH) resulting from reduced thyroid function. When thyroid hormone therapy is not initiated within the first two months of life, CH can cause severe neurological, mental and motor damage. In 80-85% of cases, CH is associated with and presumably is a consequence of thyroid dysgenesis (TD). In these cases, the thyroid gland can be absent (agenesis, 35-40%), ectopically located (30-45%) and/or severely reduced in size (hypoplasia, 5%). Familial cases of TD are rare, even though ectopic or absent thyroid has been occasionally observed in siblings. The pathogenesis of TD is still largely unknown. Although a genetic component has been suggested, mutations in the gene encoding the receptor for the thyroid-stimulating hormone (TSHR) have been identified in only two cases of TD with hypoplasia. We report mutations in the coding region of PAX8 in two sporadic patients and one familial case of TD. All three point mutations are located in the paired domain of PAX8 and result in severe reduction of the DNA-binding activity of this transcription factor. These genetic alterations implicate PAX8 in the pathogenesis of TD and in normal thyroid development.
The active thyroid hormone 3,5,3′ triiodothyronine (T3) is a major regulator of skeletal muscle function. The deiodinase family of enzymes controls the tissue-specific activation and inactivation of the prohormone thyroxine (T4). Here we show that type 2 deiodinase (D2) is essential for normal mouse myogenesis and muscle regeneration. Indeed, D2-mediated increases in T3 were essential for the enhanced transcription of myogenic differentiation 1 (MyoD) and for execution of the myogenic program. Conversely, the expression of T3-dependent genes was reduced and after injury regeneration markedly delayed in muscles of mice null for the gene encoding D2 (Dio2), despite normal circulating T3 concentrations. Forkhead box O3 (FoxO3) was identified as a key molecule inducing D2 expression and thereby increasing intracellular T3 production. Accordingly, FoxO3-depleted primary myoblasts also had a differentiation deficit that could be rescued by high levels of T3. In conclusion, the FoxO3/D2 pathway selectively enhances intracellular active thyroid hormone concentrations in muscle, providing a striking example of how a circulating hormone can be tissue-specifically activated to influence development locally. IntroductionThe active thyroid hormone 3,5,3′ triiodothyronine (T3) derives either directly from thyroid secretion or by the monodeiodination of the prohormone thyroxine (T4) by one of two iodothyronine selenodeiodinases. Type 1 deiodinase is expressed in the liver, kidney, and thyroid but not skeletal muscle of vertebrates, and T3 produced from T4 by this enzyme is largely released into the plasma. On the other hand, type 2 deiodinase (D2) is specifically expressed in the central nervous system, pituitary, thyroid gland, brown adipose tissue, retina, and skeletal muscle. Much of the T3 derived from D2-mediated deiodination remains within the cell (1). Thus, this deiodinase provides a mechanism by which thyroid hormone (TH) can be activated in a tissue-specific chronologically programmed fashion, such as during development, or in circumstances where there is a requirement for rapid increase in active TH in a specific tissue. The effectiveness of this mechanism has been shown in the D2-dependent feedback regulation by T4 of the thyrotropin-releasing hormone and thyroid-stimulating hormone (TSH) secretion by the hypothalamus and pituitary (2). A programmed transient increase in D2 is required for the proper increase in T3 at a critical time in the embryonic mouse brain (3) to allow normal development of the cochlea (4, 5), and a sympathetic nervous system-induced increase in D2 provides the cellular T3
The Sonic hedgehog (Shh) pathway plays a critical role in hair follicle physiology and is constitutively active in basal cell carcinomas (BCCs), the most common human malignancy. Type 3 iodothyronine deiodinase (D3), the thyroid hormone-inactivating enzyme, is frequently expressed in proliferating and neoplastic cells, but its role in this context is unknown. Here we show that Shh, through Gli2, directly induces D3 in proliferating keratinocytes and in mouse and human BCCs. We demonstrate that Gli-induced D3 reduces intracellular active thyroid hormone, thus resulting in increased cyclin D1 and keratinocyte proliferation. D3 knockdown caused a 5-fold reduction in the growth of BCC xenografts in nude mice. Shh-induced thyroid hormone degradation via D3 synergizes with the Shh-mediated reduction of the type 2 deiodinase, the thyroxine-activating enzyme, and both effects are reversed by cAMP. This previously unrecognized functional cross-talk between Shh/Gli2 and thyroid hormone in keratinocytes is a pathway by which Shh produces its proliferative effects and offers a potential therapeutic approach to BCC.basal cell carcinoma ͉ thyroxine ͉ differentiation ͉ cancer T hyroid hormone action is regulated by the activity of the deiodinases. Type 2 deiodinase (D2) activates the prohormone thyroxine (T4) by converting it to thyroid hormone (T3), whereas D3, by inactivating T3, terminates thyroid hormone action (1). All vertebrates express D2 and D3 that, in adults, contribute to plasma T3 and T4 homeostasis by their concerted actions with the hypothalamic-pituitary feedback axis. This homeostatic mechanism is possible because the Dio3 gene is transcriptionally stimulated by T3, whereas D2 is inhibited by two thyroid hormone-mediated effects, a transcriptional downregulation of Dio2 as well as protein inactivation by ubiquitination (for review, see ref.2). During development, preprogrammed changes in D2 and D3 expression are thought to regulate intracellular T3 concentrations essential to the normal development of the central nervous system, including the retina and the inner ear (3-6). However, the signals governing the changes in D2 and D3 expression during these complex processes are largely unknown.New insight into the developmental regulation of deiodinase expression has recently been obtained in the chicken growth plate, where Indian hedgehog induces WSB-1, an E3 ubiquitin ligase adaptor that inactivates D2 (7). The hedgehog pathway, acting through the Gli family of transcription factors, determines patterns of cell growth and differentiation in a wide variety of developmental settings (8-13). Given that, in general, signals regulating D2 expression affect D3 in a reciprocal fashion (2), we hypothesized that hedgehog proteins could up-regulate D3 while suppressing D2 expression. To explore this possibility, we turned to skin, a system in which Sonic hedgehog (Shh) is known to play dominant physiological as well as pathological roles (14). Both D2 and D3 are present in skin, a well recognized target of thyroid hormone...
Our results suggest a previously unknown role of NKX2-5 in the pathogenesis of TD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.