Treatment-refractory rheumatoid arthritis (RA) is a major clinical challenge. Drug-free remission is uncommon but provides proof-of-concept that articular immune-homeostasis can be reinstated. Here we identify active cellular and molecular mechanisms of sustained remission in RA. Single-cell transcriptomics (32,000 cells) identified phenotypic changes in synovial tissue macrophages (STM) spanning health, early/active RA, treatment-refractory/active RA, and RA in sustained remission. Each clinical state is characterised by different frequencies of 9 discrete phenotypes of 4 distinct STM subpopulations with diverse homeostatic, regulatory and inflammatory functions. This cellular atlas combined with deep-phenotypic, spatial and functional analyses of synovial biopsy FACSsorted STMs revealed two STM subpopulations (MerTK/TREM2 high and MerTK/FOLR2/LYVE1 pos ) with unique remission transcriptomic signatures enriched in negative regulators of inflammation. In response to damage signals these cells are potent producers of inflammation-resolving lipid mediators and are the only STMs that induce the repair response of synovial fibroblasts. A low proportion of MerTK pos STMs in remission RA is a prognostic biomarker predictive of flare after treatment cessation. Therapeutic enhancement of MerTK pos STM-subsets could encourage resolution of inflammation and reinstate synovial homeostasis in inflammatory arthritis.
BackgroundDespite treatment according to the current management recommendations, a significant proportion of patients with rheumatoid arthritis (RA) remain symptomatic. These patients can be considered to have ‘difficult-to-treat RA’. However, uniform terminology and an appropriate definition are lacking.ObjectiveThe Task Force in charge of the “Development of EULAR recommendations for the comprehensive management of difficult-to-treat rheumatoid arthritis” aims to create recommendations for this underserved patient group. Herein, we present the definition of difficult-to-treat RA, as the first step.MethodsThe Steering Committee drafted a definition with suggested terminology based on an international survey among rheumatologists. This was discussed and amended by the Task Force, including rheumatologists, nurses, health professionals and patients, at a face-to-face meeting until sufficient agreement was reached (assessed through voting).ResultsThe following three criteria were agreed by all Task Force members as mandatory elements of the definition of difficult-to-treat RA: (1) Treatment according to European League Against Rheumatism (EULAR) recommendation and failure of ≥2 biological disease-modifying antirheumatic drugs (DMARDs)/targeted synthetic DMARDs (with different mechanisms of action) after failing conventional synthetic DMARD therapy (unless contraindicated); (2) presence of at least one of the following: at least moderate disease activity; signs and/or symptoms suggestive of active disease; inability to taper glucocorticoid treatment; rapid radiographic progression; RA symptoms that are causing a reduction in quality of life; and (3) the management of signs and/or symptoms is perceived as problematic by the rheumatologist and/or the patient.ConclusionsThe proposed EULAR definition for difficult-to-treat RA can be used in clinical practice, clinical trials and can form a basis for future research.
MicroRNAs (miRNAs) are small non-coding RNAs that fine-tune the cell response to a changing environment by modulating the cell transcriptome. miR-155 is a multifunctional miRNA enriched in cells of the immune system and is indispensable for the immune response. However, when deregulated, miR-155 contributes to the development of chronic inflammation, autoimmunity, cancer, and fibrosis. Herein, we review the evidence for the pathogenic role of miR-155 in driving aberrant activation of the immune system in rheumatoid arthritis, and its potential as a disease biomarker and therapeutic target.
ObjectiveTo identify nailfold videocapillaroscopic features and other clinical risk factors for new digital ulcers (DUs) during a 6‐month period in patients with systemic sclerosis (SSc).MethodsIn this multicenter, prospective, observational cohort study, the videoCAPillaroscopy (CAP) study, we evaluated 623 patients with SSc from 59 centers (14 countries). Patients were stratified into 2 groups: a DU history group and a no DU history group. At enrollment, patients underwent detailed nailfold videocapillaroscopic evaluation and assessment of demographic characteristics, DU status, and clinical and SSc characteristics. Risk factors for developing new DUs were assessed using univariable and multivariable logistic regression (MLR) analyses.ResultsOf the 468 patients in the DU history group (mean ± SD age 54.0 ± 13.7 years), 79.5% were female, 59.8% had limited cutaneous SSc, and 22% developed a new DU during follow‐up. The strongest risk factors for new DUs identified by MLR in the DU history group included the mean number of capillaries per millimeter in the middle finger of the dominant hand, the number of DUs (categorized as 0, 1, 2, or ≥3), and the presence of critical digital ischemia. The receiver operating characteristic (ROC) of the area under the curve (AUC) of the final MLR model was 0.738 (95% confidence interval [95% CI] 0.681–0.795). Internal validation through bootstrap generated a ROC AUC of 0.633 (95% CI 0.510–0.756).ConclusionThis international prospective study, which included detailed nailfold videocapillaroscopic evaluation and extensive clinical characterization of patients with SSc, identified the mean number of capillaries per millimeter in the middle finger of the dominant hand, the number of DUs at enrollment, and the presence of critical digital ischemia at enrollment as risk factors for the development of new DUs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.