Distinct genetic abnormalities, such as TP53 deletion at 17p13.1, have been identified as having adverse prognostic relevance in B-cell chronic lymphocytic leukemia (B-CLL), and conventional cytogenetic studies have shown that TP53 deletion in B-CLL is mainly associated with the loss of 17p due to complex chromosomal rearrangements. We used an integrative genomic approach to investigate the significance of 17p loss in 18 B-CLLs in Binet stage A, carrying a TP53 monoallelic deletion detected by means of fluorescence in situ hybridization (FISH). Genome-wide DNA analysis using single nucleotide polymorphism (SNP) arrays of 12 of 18 samples showed 17p loss in 11 cases, with breakpoints scattered along the 17p11.2 region. FISH analysis confirmed these findings and revealed 17p loss in a small fraction of leukemic cells in the remaining TP53-deleted case, and it also indicated 17p loss in the six cases not investigated by means of SNP arrays. Mutations in exons 2-11 of the remaining TP53 allele were found in 9 of 12 deleted samples. Gene-expression profiling of 60 B-CLLs, including seven patients with 17p loss, identified 40 differentially expressed genes in 17p- versus 17p normal samples, 35 of which were downregulated in 17p-tumors. The majority (30 of 35) of these transcripts, including putative tumor suppressor genes, mapped to 17p, thus indicating a remarkable gene-dosage effect. Our data provide evidence that 17p loss may play an additional pathogenetic role in B-CLL and suggest that the concomitant loss of multiple tumor suppressor genes could be responsible for the highly adverse prognostic relevance associated with TP53 loss.
Purpose: Chromosome 13q14 deletion occurs in a substantial number of chronic lymphocytic leukemia (CLL) patients and it is believed to play a pathogenetic role. The exact mechanisms involved in this lesion have not yet been fully elucidated because of its heterogeneity and the imprecise knowledge of the implicated genes. This study was addressed to further contribute to the molecular definition of this lesion in CLL.Experimental Design: We applied single-nucleotide polymorphism (SNP)-array technology and gene expression profiling data to investigate the 13q14 deletion occurring in a panel of 100 untreated, early-stage (Binet A) patients representative of the major genetics, molecular, and biological features of the disease.Results: Concordantly with FISH analysis, SNP arrays identified 44 patients with del(13)(q14) including 11 cases with a biallelic deletion. The shorter monoallelic deletion was 635-kb long. The loss of the miR-15a/16-1 cluster occurred in all del(13)(q14) cases except in 2 patients with a monoallelic deletion, who retained both copies. MiR-15a/16 expression was significantly downregulated only in patients with the biallelic loss of the miRNA cluster compared to 13q normal cases. Finally, the natural grouping of SNP profiles by nonnegative matrix factorization algorithm showed that patients could be classified into 2 separate clusters, mainly characterized by short/biallelic versus wide/monoallelic 13q14 deletions. Supervised analyses of expression data showed that specific transcriptional profiles are correlated with these 2 genomic subgroups.Conclusions: Overall, our data highlight the presence of 2 distinct molecular types of 13q14 deletions, which may be of clinical relevance in CLL. Clin Cancer Res; 16(23); 5641-53. Ó2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.