The widespread use of distributed generation (DG), which is installed in medium-voltage distribution networks, impacts the future development of modern electrical systems that must evolve towards smart grids. A fundamental topic for smart grids is automatic distributed voltage control (ADVC). The voltage is now regulated at the MV busbar acting on the on-load
tap changer of the HV/MV transformer. This method does not guarantee the correct voltage value in the network nodes when the distributed generators deliver their power. In contrast, the ADVC allows control of the voltage acting on a single generator; therefore, a better voltage profile can be obtained. In this paper, an approach based on sensitivity theory is shown to control the node voltages regulating the reactive power injected by the generators.
After the theoretical analysis, a numerical example is presented to validate the theory. The proposed voltage regulation method has been developed in collaboration with Enel Distribuzione S.p.A. (the major Italian DSO), and it will be applied in the Smart Grids POI-P3 pilot project, which is financed by the Italian Economic DevelopmentMinistry. Before the real field application in the pilot project, a real-time digital simulation has been used to validate the
algorithm presented. Moving in this direction, Enel Distribuzione S.p.A. built a new test center in Milan equipped with a real-time digital simulator (from RTDS Technologies)
Due to the development of Distributed Generation (DG), which is installed in Medium-Voltage Distribution Networks (MVDNs) such as generators based on renewable energy (e.g., wind energy or solar energy), voltage control is currently a very important issue. The voltage is now regulated at the MV busbars acting on the On-Load Tap Changer of the HV/MV transformer. This method does not guarantee the correct voltage value in the network nodes when the distributed generators deliver their power. In this paper an approach based on Sensitivity Theory is shown, in order to control the node voltages regulating the reactive power exchanged between the network and the dispersed generators.
The automatic distributed voltage regulation is a particular topic of the Smart Grids
In order to study new technologies, in sight of smart
grids, and for new regulation, protection, and control devices homologation tests, it becomes essential to use a real-time digital simulator (RTDS). This calculator offers the possibility to analyze the behavior of the aforementioned devices in any electrical grid condition, especially those hardly reproducible on the real field. In this paper, the analysis of two types of Petersen Coil Regulators will be discussed, focusing on the experimental results reached, useful to gain an optimized electrical distribution grid management
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.